Higher-order Shear Deformable Analysis of Laminated Plates on Two-parameter Elastic Foundations

Two-parameter 탄성지반위에 놓인 고차전단변형 적층판의 해석

  • 한성천 (대원과학대학 토목과) ;
  • 장석윤 (서울시립대학교 토목공학과)
  • Received : 2000.08.23
  • Published : 2001.02.27

Abstract

The main purpose of this paper is to present deflections of laminated composite plates on the two-parameter foundations. that is an elastic foundation with shear layer. This paper focuses on the deformation behaviour of anisotropic structures on elastic foundations. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported isotropic and orthotropic plates on elastic foundations are compared with those of Timoshenko and LUSAS program. The results show an excellent agreement for the isotropic and LUSAS program. The results show an excellent agreement for the isotropic and orthotropic plates on the elastic foundations. Numerical results for displacements are presented to show the effects of side-to-thickness ratio aspect ratio, material anisotropy and shear modulus of foundations.

본 연구의 주된 목적은 전단 층을 갖는 two-parameter 탄성지반 위에 놓인 복합적층판의 처짐에 관한 규명이다. 본 논문은 탄성지반에 놓인 비등방성 구조의 변형거동과 2중 조화함수를 이용한 3차 전단변형이론의 확장에 초점을 두고 있다. 유도된 식들을 검증하기 위해 Timoshenko의 탄성지반 위에 놓인 단순지지 된 등방성판과 LUSAS 프로그램에 의한 이방성판의 처짐과 비교하였으며 본 연구의 결과들은 등방성판과 이방성판의 결과와 매우 정확히 일치함을 알 수 있었다. 처짐에 관한 수치해석결과들은 폭-두께 비, 형상 비 재료 비등방성과 전단지반계수 등에 따른 효과를 보여준다.

Keywords

References

  1. Die lehre von der Elastizitat und Festigkeit v.182 Winkler, E.
  2. Die Berechung des Eisenbahnoberbaues, 2Ed. Zinnermann H.
  3. Vorlesungen uber Technische Mechanik, 9th Ed. v.258 Foppl A
  4. Beams on Elastic Foundations. Hetenyi M.
  5. J. of appl. Phys. v.21 A general solution for the bending of beams in an elastic Foundation of arbitrary continuity Hetenyi M.
  6. Gosuedarstvennoe Izadatelstvo Literaturi po Stroitelstvui Arkhitekture Foundamentals of a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants Pasternak P. L.
  7. Theory of Plates and Shells Timoshenko S. P.;Woinowsky-Krieger S.
  8. J. of Applied Mechanics v.45 A simple higherorder theory for laminated composite plates Reddy, J. N.
  9. J. of Sound and Vibration v.60 Dynamic stability of Timoshenko beams resting on an elastic foundation Abbas, B. A.;Thomas, J.
  10. J. of Sound and Vibration v.147 Buckling and vibration of polar orthotropic circular plates of linerarly varying thicknes retiong on an elastic foundation Gupta, U. S.;Lal, R.;Jain, S. K.
  11. Proceeding of the 6th International conference on Steel and Space Structures Nonlinear analysis of laminated composite plates on elastic foundation using the finite difference method Han, S. C.;Yoon, S. H.;Park, W. T.
  12. Composite Structures for Civil and Architectural Engineering Kim, D. H.
  13. J. of KSSC v.6 no.3 Free vibrations of beams on elastic foundations with shear layer Lee, B. K.
  14. Earthquake Engineering and Structural Dynamics v.11 Vibration of beams on non-homogeneous elastic foundations Pavlovic, M. V.;Whlie, G. B.
  15. J. of Sound and Vibration v.118 Free vibration of a solid circular plate free at its edge and attached to a winkler foundation Salari, M.;Bert, C. W.;Striz, A. G.
  16. J. of KSSC v.6 no.4 Post-buckling failure envelops of quasi-isotropic and cross-ply rectangular composite plates under thermal load and uniaxial compression Shin, D. K.
  17. LUSAS Ver 13.2
  18. Mechanics of Lamintaed Composite Plates Reddy, J. N.