• Title/Summary/Keyword: Winkler model

Search Result 173, Processing Time 0.028 seconds

Bending moments in raft of a piled raft system using Winkler analysis

  • Jamil, Irfan;Ahmad, Irshad
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2019
  • Bending moments in the raft of a pile raft system is affected by pile-pile interaction and pile-raft interaction, amongst other factors. Three-Dimensional finite element program has to be used to evaluate these bending moments. Winkler type analysis is easy to use but it however ignores these interactions. This paper proposes a very simplified and novel method for finding bending moments in raft of a piled raft based on Winkler type where raft is supported on bed of springs considering pile-pile and pile-raft interaction entitled as "Winkler model for piled raft (WMPR)" The pile and raft spring stiffness are based on load share between pile and raft and average pile raft settlement proposed by Randolph (1994). To verify the results of WMPR, raft bending moments are compared with those obtained from PLAXIS 3D software. A total of sixty analysis have Performed varying different parameters. It is found that raft bending moments obtained from WMPR closely match with bending moments obtained from PLAXIS 3D. A comparison of bending moments ignoring any interaction in Winkler model is also made with PLAXIS-3D, which results in large difference of bending moments. Finally, bending moment results from eight different methods are compared with WMPR for a case study. The WMPR, though, a simple method yielded comparable raft bending moments with the most accurate analysis.

The Effect of Flexibility for the Offshore Wind Turbine System (해상풍력시스템의 거동 해석을 위한 지반의 연성효과 고려방안)

  • Choi, Changho;Han, Jintae;Cho, Samdeok;Jang, Youngeun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.4
    • /
    • pp.59-66
    • /
    • 2013
  • The foundation of offshore wind energy system is generally assumed to be fixed-ended in system analysis for the convenience of calculation and, correspondingly, it might lead a conservative design. If soil-foundation interaction get involved with the analysis, the system characteristics such as natural frequency, shear force, moment and displacement are expected to differ from those of fixed-ended case. In this study, the analysis have been conducted to identify how the response of offshore wind turbine varies upon considering the foundation flexibility with soil-foundation interaction. The model taking account of the flexibility of foundation was compared with fixed-ended model at the seabed. The flexibilities of foundation were obtained by coupled spring model at the seabed and Winkler Spring Model with soil depth. As a result, the first mode of the whole system with the Winkler Spring Model was decreased relative to that with the fixed-ended model. The results showed that the effect of foundation flexibility should be considered when designing the offshore wind energy system.

Critical Speed Analysis of Geogrid-Reinforced Rail Roadbed (지오그리드로 보강된 철도노반의 한계속도에 관한 연구)

  • 신은철;이규진;오영인
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.534-539
    • /
    • 2001
  • This paper presents the critical speed analysis of geogrid-reinforced rail roadbeds on soft soil. A rail roadbed on soft ground must be designed to avoid intolerable stress in the underlying soil and to give sufficient support for the rail system. At high speeds, the deformation of rail systems will gain dynamic amplification, and reach excessive values as a certain speed, here termed critical speed is approached. The elastic Winkler foundation model was used to predict the critical speed of geogrid-reinforced rail roadbeds on soft soil and the model properties were determined by the in-situ cyclic plate load test. Based on the parametric study of elastic beam on Winkler foundation model, the critical speed increase with the increase of the flexural risidity of subgrade EI and the stiffness coefficient of Winkler foundation k. From the in-situ cyclic load tests and analysis of elastic beam on Winkler foundation model, the critical speed increase with increase in number of reinforced layer and non-dimensional value for depth of first geogrid layers and the thickness of reinforced rail roadbed u/d.

  • PDF

Dynamic Analysis of Building Structures with Foundation Uplift (기초의 uplift를 고려한 건축구조물의 동적해석)

  • ;;Song, Yoon Hwan
    • Computational Structural Engineering
    • /
    • v.1 no.1
    • /
    • pp.103-112
    • /
    • 1988
  • In this study, the earthquake response of building structures with foundation uplift was investigated. The Winkler foundation model and two-spring model are widely used to represent the interaction between foundation mat and soil. While the analysis using the Winkler foundation model results in more accurate prediction, it requires a complex procedure and longer computation time. In this study, an equivalent two-spring model(S model) is proposed. The S model can represent the Winkler foundation model more accurately and the analysis using the S model is simpler and more effective. The S model is derived by simplifying the nonlinear moment-rotation relationship of foundation mat. The dynamic responses predicted by the S model gave a good agreement to those of the Winkler foundation model.

  • PDF

Nonlinear analysis of finite beam resting on Winkler foundation with consideration of beam-soil interface resistance effect

  • Zhang, L.;Zhao, M.H.;Xiao, Y.;Ma, B.H.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.573-592
    • /
    • 2011
  • Comprehensive and accurate analysis of a finite foundation beam is a challenging engineering problem and an important subject in foundation design. One of the limitation of the traditional Winkler elastic foundation model is that the model neglects the effect of the interface resistance between the beam and the underneath foundation soil. By taking the beam-soil interface resistance into account, a deformation governing differential equation for a finite beam resting on the Winkler elastic foundation is developed. The coupling effect between vertical and horizontal displacements is also considered in the presented method. Using Galerkin method, semi-analytical solutions for vertical and horizontal displacements, axial force, shear force and bending moment of the beam under symmetric loads are presented. The influences of the interface resistance on the behavior of foundation beam are also investigated.

A Dissimilarity with Dice-Jaro-Winkler Test Case Prioritization Approach for Model-Based Testing in Software Product Line

  • Sulaiman, R. Aduni;Jawawi, Dayang N.A.;Halim, Shahliza Abdul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.932-951
    • /
    • 2021
  • The effectiveness of testing in Model-based Testing (MBT) for Software Product Line (SPL) can be achieved by considering fault detection in test case. The lack of fault consideration caused test case in test suite to be listed randomly. Test Case Prioritization (TCP) is one of regression techniques that is adaptively capable to detect faults as early as possible by reordering test cases based on fault detection rate. However, there is a lack of studies that measured faults in MBT for SPL. This paper proposes a Test Case Prioritization (TCP) approach based on dissimilarity and string based distance called Last Minimal for Local Maximal Distance (LM-LMD) with Dice-Jaro-Winkler Dissimilarity. LM-LMD with Dice-Jaro-Winkler Dissimilarity adopts Local Maximum Distance as the prioritization algorithm and Dice-Jaro-Winkler similarity measure to evaluate distance among test cases. This work is based on the test case generated from statechart in Software Product Line (SPL) domain context. Our results are promising as LM-LMD with Dice-Jaro-Winkler Dissimilarity outperformed the original Local Maximum Distance, Global Maximum Distance and Enhanced All-yes Configuration algorithm in terms of Average Fault Detection Rate (APFD) and average prioritization time.

Response of a rectangular plate-column system on a tensionless Winkler foundation subjected to static and dynamic loads

  • Guler, K.;Celep, Z.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.6
    • /
    • pp.699-712
    • /
    • 2005
  • The response of a plate-column system having five-degree-of-freedom supported by an elastic foundation and subjected to static lateral load, harmonic ground motion and earthquake motion is studied. Two Winkler foundation models are assumed: a conventional model which supports compression and tension and a tensionless model which supports compression only. The governing equations of the problem are obtained, solved numerically and the results are presented in figures to demonstrate the behavior of the system for various values of the system parameters comparatively for the conventional and the tensionless Winkler foundation models.

An Analysis of the Farm Silo Supported by Ground (지반과 구조물 사이의 상호작용을 고려한 농업용 사이로의 해석에 관한 연구 (III) - 제3보 상대강성의 영향 -)

  • 조진구;조형영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.2
    • /
    • pp.39-52
    • /
    • 1987
  • This study was to investigate the effects of soil-structure relative stiffness on the structural characteristics of the cylindrical tank supported by soil. A standard example model of the farm silo rested on the Winkler's subsoil model was used for the analysis of soil-structure coupled system. In this paper, Winkler's constants 4,15 and l00kg/cm$^2$/cm were considered and the bottom plate thicknesses of the farm silo 20, 30, 50,100 and 150cm were adopted. For the given model the effects of bottom plate thickness were the most conspicuous at weakest Winkler's constant 4kg/ cm$^2$/cm. While when Winkler's constant is l00kg/cm$^2$/cm, the effect of the bottom plate thickness is almost negligible. On the other hand, when the bottom plate thickness is more than 100cm, the effects of elastic foundation were aknost disappeared. In design practice, it is hoped that the thicknesses of bottom plate should be determined reasonably because of it's considerable effect on the structural characteristics as the lOOcm thickness of bottom plate will not be practical value in usual sites.

  • PDF

Free Vibration Analysis of Thick Plate Subjected to In-plane Force on Inhomogeneous Pasternak Foundation (비균질 Pasternak지반 위에 놓인 면내력을 받는 후판의 진동해석)

  • Lee, Yong Soo;Kim, Il Jung;Oh, Soog Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, as the size of buildings structure becomes large increases, their mat area of building structure is supported or by an inhomogeneous foundation. This paper presents a vibration analysis on thick plates subjected to in-plane force is presented in this paper. The rectangular plate is isotropic, homogeneous, and composed of a linearly elastic material. A vibration analysis of the rectangular thick plate iwas done by useing ofarectangular finite element with 8 nodes and 9 nodes. In this study, the foundation was idealized as a Pasternak foundation model. A Pasternak foundation haves a shear layer on Winkler's model, which idealizes the foundation as a vertical spring. In order tTo analysze the vibration of a plate supported on by an inhomogeneous Pasternak foundation, the value of the Winkler foundation parameter of the central and border zones of the plate awere chosen as WFP1 and WFP2. (fFigure 4.). The Winkler foundation parameter of WFP1 and WFP2 is varied from 0 to 10, $10^2$, and $10^3$ and the shear foundation parameters is were 0, 5, and 10. The ratio of the in-plane force to the critical load iwas applied as 0.4 to 0.8

Winkler spring behavior in FE analyses of dowel action in statically loaded RC cracks

  • Figueira, Diogo;Sousa, Carlos;Neves, Afonso Serra
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.593-605
    • /
    • 2018
  • A nonlinear finite element modeling approach is developed to assess the behavior of a dowel bar embedded on a single concrete block substrate, subjected to monotonic loading. In this approach, a discrete representation of the steel reinforcing bar is considered, using beam finite elements with nonlinear material behavior. The bar is connected to the concrete embedment through nonlinear Winkler spring elements. This modeling approach can only be used if a new constitutive model is developed for the spring elements, to simulate the deformability and strength of the concrete substrate. To define this constitutive model, an extensive literature review was conducted, as well as 3 experimental tests, in order to select the experimental data which can be used in the calibration of the model. Based on this data, an empirical model was established to predict the global dowel response, for a wide range of bar diameters and concrete strengths. This empirical model provided the information needed for calibration of the nonlinear Winkler spring model, valid for dowel displacements up to 4 mm. This new constitutive model is composed by 5 stages, in order to reproduce the concrete substrate response.