Identification and Characterization of an Oil-degrading Yeast, Yarrowia lipolytica 180

  • Kim, Tae-Hyun (Microbiology Lab., Marine Biology Division, Korea Ocean Research & Development Institute) ;
  • Lee, Jung-Hyun (Microbiology Lab., Marine Biology Division, Korea Ocean Research & Development Institute) ;
  • Oh, Young-Sook (Microbiology Lab., Marine Biology Division, Korea Ocean Research & Development Institute) ;
  • Bae, Kyung-Sook (Korean Collection for Type Cultures, Yusong, Taejon) ;
  • Kim, Sang-Jin (Microbiology Lab., Marine Biology Division, Korea Ocean Research & Development Institute)
  • Published : 1999.09.01

Abstract

Among oil-degrading microorganisms isolated from oil-polluted industrial areas, one yeast strain showed high degradation activity of aliphatic hydrocarbons. From the analyses of 18S rRNA sequences, fatty acid, coenzyme Q system, G+C content of DNA, and biochemical characteristics, the strain was identified as Yarrowia lipolytica 180. Y. lipolytica 180 degraded 94% of aliphatic hydrocarbons in minimal salts medium containing 0.2% (v/v) of Arabian light crude oil within 3 days at 25$^{\circ}C$. Optimal growth conditions for temperature, pH, NaCl concentration, and crude oil concentration were 30$^{\circ}C$, pH 5-7, 1%, and 2% (v/v), respectively. Y. lipolytica 180 reduced surface tension when cultured on hydrocarbon substrates (1%, v/v), and the measured values of the surface tension were in the range of 51 to 57 dynes/cm. Both the cell free culture broth and cell debris of Y. lipolytica 180 were capable of emulsifying 2% (v/v) crude oil by itself. They were also capable of degrading crude oil (2%). The strain showed a cell surface hydrophobicity higher than 90%, which did not require hydrocarbon substrates for its induction. These results suggest that Y. lipolytica has high oil-degrading activity through its high emulsifying activity and cell hydrophobicity, and further indicate that the cell surface is responsible for the metabolism of aliphatic hydrocarbons.

Keywords

References

  1. J. Mol. Biol. v.215 Basic local alignment search tool Altschul, S.F.;W. Gich;W. Miller;E.W. Myers;D.J. Lipman
  2. Adv. Appl. Microbiol. v.22 The microbiology of aquatic oil spills Bartha, R.;R.M. Atlas
  3. Appl. Microbiol. v.15 Incorporation of liquid hydrocarbons into agar media Baruah, J.N.;Y. Alroy;R.K. Mateles
  4. Petroleum Microbiology The fate of petroleum in soil ecosystems Bossert I.;R. Bartha;R. M. Atlas(ed.)
  5. Appl. Environ. Microbiol. v.48 no.4 Isolation of a bioemulsifier from Candida lipolytica Cirigliano, M.;G.M. Carman
  6. PHYLIP (phylogeny inference package), version 3.5 Felsenstein, J.
  7. Petroleum Microbiology The fate of petroleum in marine ecosystems Floodgate G.D.;R. M. Atlas(ed.)
  8. FEMS Microbiol. Lett. v.122 The possible involvement of cell surface and outer membrane proteins of Acinetobacter sp. A3 in crude oil degradation Hanson, K.;G. Vikram;C. Kale;A.J. Desai
  9. FEMS Microbiol. Lett. v.38 The effect of a range of biological polymers and synthetic surfactants on the adhesion of a marine Pseudomonas sp. strain NCMB 2021 to hydrophilic and hydrophobic surfaces Humphries, M.;F. Jaworzyn;J.B. Cantwell
  10. Appl. Environ. Microbiol. v.43 Sopholipids from Torulopsis bombicola: possible relation to alkane uptake Ito, S.;S. Inoue
  11. Yeast v.10 Genetic interrelationship among species of the genus Zygosaccharomyces as revealed by small-subunit rRNA gene sequences James, S.A.;M.D. Collins;I.N. Roberts
  12. Biotechnol. Bioeng. v.18 The mode of interaction between the substrate and cell surface of the hydrocarbon-utilizing yeast Candida tropicalis Kapelli, O.;A. Fiechter
  13. J. Bacteriol. v.133 Chemical and structural alterations at the cell surface of Candida tropicalis, induced by hydrocarbon substrate Kapelli, O.;M. Muller;A. Fiechter
  14. J. Bacteriol. v.140 Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter Kappeli, O.;W.R. Finnerty
  15. Kor. J. Biotechnol. Bioeng. v.13 Effect of hydrocarbon uptake modes on oil degradation rate by mixed cultures of petroleum degraders Ko, S.-H.;H.K. Lee;S.-J. Kim
  16. Kor. J. Microbiol. v.32 Isolation and characterization of a benzene-degrading strain, Flavobacterium sp. BEN2 Lee, C.-H.;J.-M. Oh;T.-J. Kwon;H.-H Suh;G.-S. Kwon;K.-S. Bae;M.-S. Lee;B.-D. Yoon
  17. Economic Microbiology v.4 Levi, J.D.;J.L. Shennan;G.P. Ebbon;A. H. Rose(ed.)
  18. Nucleic Acids Res. v.22 The Ribosomal Database Project Maidak B.L.;N. Larsen;M.J. McCaughey;R. Overbeek;G.J. Olsen;K. Fogel;J. Blandy;C.R. Woese
  19. J. Gen. Appl. Microbiol. v.30 Respiratory activities in intact cells and spheroplasts of hydrocarbon utilizing yeasts Mineki, S.;M. Iida;H. Itzuka
  20. Biotechnol. Bioeng. v.16 Assimilation of liquid hydrocarbon by microorganisms. I. Mechanism of hydrocarbon uptake Miura, Y.;M. Okazake;S.-I. Hamada;S.-I. Murakawa;R. Yugen
  21. Biotechnol. Bioeng. v.19 Characteristics of hydrocarbon uptake in cultures with two lipid phases Nakahara, T.;L.E. Erickson;J.R. Gutierrez
  22. Appl. Microbiol. Biotechnol. v.32 Effect of the addition of microbial surfactants on hydrocarbon degradation in a soil population in a stirred reactor Oberbremer, A.;R. Muller-Hurtig;F. Wagner
  23. Appl. Microbiol. Biotechnol. v.50 Evidence for separate adhesion mechanisms for hydrophilic and hydrophobic surfaces in Vibrio proteolytica Paul, J.H.;W.H. Jeffrey
  24. Biotechnol. Bioeng. v.14 Growth models of cultures with two liquid phases. Ⅷ. Experimental observations on droplet size and interfacial area Prokop, A.;M. Ludvik;L.E. Erickson
  25. Infect. Immun. v.39 Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan Rosenberg, E.;A. Gottlieb;M. Rosenberg
  26. FEMS Microbiol. Lett. v.9 Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity Rosenberg, M.;D.L. Gutnick;E. Rosenberg
  27. J. Gen. Microbiol. v.94 A comparative analysis of the ultrastructure of hydrocarbon-oxidizing microorganism Scott, C.C.L.;W.R. Finnerty
  28. FEMS Micro. Lett. v.25 Determination of DNA base composition by reversed-phased high performance liquid chromatography Tamaoka, J.;T. Komagata
  29. Colloids Surf. v.B5 Implications of microbial adhesion to hydrocarbons for evaluating cell surface hydrophobicity. 2. Adhesion mechanisms van der Mei, H.C.;B. Van de Belt-Gritter;H.J. Busscher
  30. Estuaries v.11 NOAA Gulf of Mexico Status and Trends Program: Trace organic contaminant distribution in sediments and oysters Wade, T.L.;E.L. Atlas;J.M. Brooks;M.C. Kennicutt Ⅱ;R.G. Fox;J. Sericano;B. Garcia-Romero;D. DeFreitas
  31. J. Gen. Appl. Microbiol. v.19 Coenzyme Q system in the classification of the yeast genera Rhodotorula and Cryptococcus, and the yeast-like genera Sporobolomyces and Rhodosporidium Yamada, Y.;K. Kondo
  32. Biotechnol. Bioeng. v.9 Properties and Biodegradation of a Bioemulsifier from Corynebacterium hydrocarboclastus Zajic, J.E.;H. Guignard;D.F. Gerson
  33. Appl. Environ. Microbiol. v.58 Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant) Zhang, Y.;R.M. Miller
  34. Bacteriol. Rev. v.10 Action of microorganisms on hydrocarbons ZoBell, C.E.