Catabolism of 4-Hydroxybenzoic Acid by Pseudomonas sp. DJ-12

  • Tim (Department of Microbiology and Research Institute of Genetic Engineering, Cungbuk National University) ;
  • Chae, Jong-Chan (Department of Microbiology and Research Institute of Genetic Engineering, Cungbuk National University) ;
  • Kim, Chi-Kyung (Department of Microbiology and Research Institute of Genetic Engineering, Cungbuk National University)
  • Published : 1999.09.01

Abstract

A Pseudomonas sp. strain DJ-12 isolated by 4-cholrobiphenyl enrichment culture technique is capable of utilizing 4-hydroxybenzoic acid as a sole source of carbon and energy. The bacterium catabolized 4-hydroxybenzoic acid through the intermediate formation of protocatechuic acid, which was further metabolized. The cell free extracts of pseudomonas sp. DJ-12, grown on 4-hydroxybenzoic acid showed higher activities of 4-hydroxyenzoate 3-hydroxylase and protocatechuate 4,5-dioxygenase, but the activity of catechnol 2,3-dioxygenase was lower. The results suggest that 4-hydroxybenzoic acid is catabolized via protocatechuic acid rather than catechol or gentisic acid in this bacterium and that the protocatechuic acid formed was metabolized through a metacleavage pathway by protocatechuate 4,5-dioxygenase.

Keywords

References

  1. J. Microbiol. v.35 Dechlorination of 4-chlorobenzoate by Pseudomonas sp. DJ-12 Chae, J.C.;C.K. Kim
  2. J. Bacteriol. v.121 Novel pathway for degradation of protocatechuic acid in Bacillus sp. Crawford, R.L.
  3. Methods in Microbiology 6A Methods used to determine metabolic pathways Dagley, S.;P.J. Chapman;J.R. Norris(ed.);D.W. Ribbons(ed.)
  4. J. Bacteriol. v.169 Protocatechuate is not metabolized via catechol in Enterobacter aerogens Doten, R.C.;L.N. Ornston
  5. J. Bacteriol. v.160 Dissimilation of aromatic compounds in Rhodotorula graminis: Biochemical characterization of pleitiropically negative mutants Durham, D.R.;C.G. McNamee;D.B. Stewart
  6. J. Bacteriol. v.175 Cloning, sequencing and expression of the Pseudomonas putida protocatechuate genes Frazee, R.W.;D.W. Livingston;D.C. Laporte;J.D. Lipscomb
  7. Appl. Environ. Microbiol. v.56 Catabolism of benzoate, and monohydroxylated benzoates by Amycolactopsis and Streptomyces spp. Grund, E.;C. Knorr;R. Eichenlaub
  8. Kor. J. Microbiol. v.31 Cloning and expression of pcbAB genes from Pseudomonas sp. DJ-12 Han, J.J.;T.K Sung;C.K. Kim
  9. J. Bacteriol. v.91 Synthesis of enzymes of the mandelate pathway by Pseudomonas putida. 1. Synthesis of enzymes wild type Hegeman, G.D.
  10. J. Bacteriol. v.152 2-Pyrone-4,6-dicarboxylic acid, a catabolite of gallic acids in Pseudomonas species Kersten, P.J.;S. Dagley;J.W. Whittaker;D.M. Arciero;J.D. Lipscomb
  11. Biochem. Biophys. Res. Commn. v.183 Characterization of catechol 2,3-dioxygenase Kim, Y.;B.S. Choi;J.R. Lee;H.I. Chang;K.R. Min
  12. J. Microbiol. v.32 Cloning and expression of pcbCD genes in Escherichia coli. from Pseudomonas sp. DJ-12 Kim C.K.;T.K. Sung;J.H. Nam;Y.C. Kim;J.K. Lee
  13. Kor. J. Microbiol. v.34 Culture conditions of Escherichia coli CK 1092 for production of 2.3-dihydroxybiphenyl dioxygenase Lee, J.Y.;Y.S. Kim;K.S. Lee;K.H. Min;Y.C. Kim;C.K. Kim;J.Y. Lim
  14. J. Biol. Chem. v.193 Protein measurement with the Folin-Phenol reagent Lowry, O.H.;N.J. Rosebrough;A.L. Farr;R.J. Randall
  15. J. Biol. Chem. v.210 The enzymatic formation of β-carboxymuconic acid MacDonald, D.L.;R.Y. Stanier;J.L. Ingrahm
  16. Indian J. Microbiol. v.35 Catabolism of monohydroxybenzoic acids by a Bacillus sp. Manohar, S.;S.B. Mashetty;T.B. Karegoudar
  17. J. Bacteriol. v.152 Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas pacimobilis SYK-6 Masai, E.;S. Shinohara;H. Hara;N. Nishikawa;Y. Kata-yama;M. Fukuda
  18. Indian J. Environ. Hlth. v.37 Degradation of 4-hydroxybenzoic acid by a bacterium Mashetty, S.B.;S. Manohar;T.B. Karegoudar
  19. J. Bacteriol. v.172 Molecular cloning of the protocatechuate 4,5-dioxygenase gene in Pseudo-monas paucimobilis Noda, Y.;S. Nishikawa;K. Shiozuka;H. Kadokura;H. Nakajima;K. Haraguchi;M. Yamasaki
  20. J. Mol. Biol. v.244 Structure of protocatechuate 3,4-dioxygenase from Pseudo-monas aeruginosa at 2.5 A resolution Ohlendrof, D.H.;A.M. Orville;J.D. Lipscomb
  21. Biochim. Biophys. Acta v.220 Purification and some properties of protocatechuate 4,5-dioxygenase Ono, K.;M. Nozaki;O. Hayaishi
  22. Curr. Top. Cell. Regul. v.12 The evolution of induction mechanism in bacteria: insights derived from the study of the β-ketoadipate pathway Ornston, L.N.;D. Parke
  23. Adv. Microb. Physiol. v.9 The β--ketoadipate pathway Stanier, R.Y.;L.N. Ornston
  24. J. Gen. Microbiol. v.43 The aerobic Pseudomonads: a taxonomic studies Stanier, R.Y.;N.J. Palleroni;M. Doudoroff
  25. FEMS Microbiol. Letts. v.125 o-, m- and p- hydroxybenzoate degradative pathways in Rhodococcus erythropolis Suemori, A.;K. Nakajima;R. Kurane;Y. Nakamura
  26. Kor. J. Appl. Microbiol. Biotechnol. v.21 Enzymatic properties of the 2,3-dihydroxybiphenyl dioxygenase purified from Pseudomonas sp. DJ-12 Sung, T.K.;J.H. Nam;C.K. Kim
  27. J. Bacteriol. v.175 Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase Wolgel, S.A.;J.E. Dege;P.E. Perkins-Olson;C.H. Juarez-Garcia;R.L. Crawford;E. Muneck;J.D. Lipscomb
  28. J. Bacteriol. v.171 Genetic organization and sequence of the Pseudomonas cepacia genes for the alpha and beta subunits of protocatechuate 3,4-dioxygenase Zylstra, G.J.;R.H. Olsen;D.P. Ballou