ROUGH ISOMETRY, HARMONIC FUNCTIONS AND HARMONIC MAPS ON A COMPLETE RIEMANNIAN MANIFOLD

  • Kim, Seok-Woo (Department of Mathematics seoul National University) ;
  • Lee, Yong-Han (Department of Mathematics seoul National University)
  • Published : 1999.01.01

Abstract

We prove that if a given complete Riemannian manifold is roughly isometric to a complete Riemannian manifold satisfying the volume doubling condition, the Poincar inequality and the finite covering condition at infinity on each end, then every positive harmonic function on the manifold is asymptotically constant at infinity on each end. This result is a direct generalization of those of Yau and of Li and Tam.

Keywords

References

  1. J. Funct. Anal. v.99 Boundary Behavior of Harmonic Maps on Non-smooth Domains and Complete Negatively Curved Manifolds P. Aviles;H. I. Choi;M. Micallef
  2. Ann. Sci. Ec. Norm. Sup. Paris v.15 A note on the isoperimetric constant P. Buser
  3. Proc. Sympos. Pure Math. v.36 The Liouville theorem for harmonic maps S. Y. Cheng
  4. Proc. Amer. Math. Soc. v.85 On the Liouville Theorem for Harmonic Maps H. I. Choi
  5. J. Korean Math. Soc. v.33 no.2 Rough Isometry and Harnack Inequality H. I. Choi;Y. H. Lee
  6. Rev. Mat. Iberoamericana v.11 Varietes riemanniennes isometriques a l'infini Th. Coulhon;L. Saloff-Coste
  7. Mat. Sb.;English tlansl. in Math. USSR-Sb v.128;56 The heat equation on noncompact Riemannian manifolds A. A. Grigor'yan
  8. Lecture Notes in Math. v.1201 Analytic inequalities, and rough isometries between noncompact Riemannian manifolds M. Kanai
  9. J. Math. Soc. Japan v.37 no.3 Rough isometries, and combinatorial approximations of geometries of non-compact riemannian manifolds M. Kanai
  10. J. Math. Soc. Japan v.38 no.2 Rough isometries and the parabolicity of riemannian manifolds M. Kanai
  11. Proc. London Math. Soc. v.61 Probability, convexity, and harmonic maps with samall image Ⅰ: uniqueness and fine existence W. S. Kendall
  12. Ann. of Math. v.125 Positive harmonic functions on complete Riemannian manifolds with non-negative curvature outside a compact set P. Li;L. F. Tam
  13. Amer. J. Math. v.109 Symmetric Green's functions on complete manifolds P. Li;L. F. Tam
  14. J. Differential Geom. v.35 Harmonic functions and the structure of complete manifolds P. Li;L. F. Tam
  15. J. Differential Geom. v.41 Green's functions, Harmonic functions, and Volume Comparison P. Li;L. F. Tam
  16. Ball covering on manifolds with nonnegative Ricci curvature near infinity Z-D. Liu
  17. Bounded Harmonic Maps on a Class of Manifolds C. J. Sung;L. F. Tam;J. Wang
  18. Conf. on Harmonic Analysis in Honor of Antoni Zygmund v.Ⅰ;Ⅱ Potential theory and diffusion on Riemannian manifolds N. Varopoulos
  19. Comm. Pure Appl. Math. v.28 Harmonic functions on complete Riemannian manifolds S. T. Yau