수중둔덕의 이동율 예측을 위한 해석해

Analytical Solutions for Predicting Movement Rate of Submerged Mound

  • 발행 : 1998.12.01

초록

파고와 주기 그리고 수심의 함수로 정의된 이류계수를 파고와 주기에 대한 결합분포함수와 확률적으로 결합하여 수중둔덕의 이동율을 예측할 수 있는 해석해를 유도하였다. 파랑의 비선형성에 의하여 유발되는 하상에서의 흐름이 표사의 이동을 유발한다는 가정하에 개념적 모형의 표사이동량 방정식을 사용하였다. 표사보존식에 표사이동량을 대입하여 시간에 따른 해저면의 변동을 나타내는 비선형 이류-확산 방정식을 얻을 수 있었다. 해석해에 의하면 수심이 증가할 수록 수중둔덕의 이동율은 지수적으로 감소하는 경향을 보였다. 그러나 스펙트럼에서 주파수 영역의 폭을 정의하는 계수, v의 값이 커지면 수중둔덕의 이동율은 증가하였다. 해석해에 의하여 예측된 수중둔덕의 이동율은 관측자료보다 과대평가하는 경향을 나타내나, 해석해를 유도하는 과정에 내포된 이론식의 제약성 및 입력자료의 부정확성 등을 고려할 때 전반적으로 해석해의 결과는 관측자료와 잘\ulcorner 일치한다고 볼 수 있다. 특히, 수심의 변화에 따른 해석해의 거동은 대상영역 외해에서 추정된 자료를 이용하여 이산화 기법으로 추정된 결과와 매우 잘 일치하였다.

Analytical solutions to predict the movement rate of submerged mound are derived using the convection coefficient and the joint distribution function of wave heights and periods. Assuming that the sediment is moved onshore due to the velocity asymmetry of Stokes' second order nonlinear wave theory, the micro-scale bedload transport equation is applied to the sediment conservation. The nonlinear convection-diffusion equation can then be obtained which governs the migration of submerged mound. The movement rate decreases exponentially with increasing the water depth, but the movement rate tends to increase as the spectral width parameter, $ u$ increases. In comparison of the analytical solution with the measured data, it is found that the analytical solution overestimates the movement rate. However, the agreement between the analytical solution and the measured data is encouraging since this over-estimation may be due to the inaccuracy of input data and the limitation of sediment transport model. In particular, the movement rates with respect to the water depth predicted by the analytical solution are in very good agreement with the estimated result using the discritization technique with the hindcast wave data.

키워드

참고문헌

  1. J. Waterway, Port, Coastal and ocean Engrg., ASCE v.124 no.1 Velocity parameters for predicting cross-shore sediment movement Ahrens, J. P.;Hands, E. B.
  2. Proc. Coastal Sediments '91 Monitoring of a nearshore disposal mound at Silver Strand State Park Andrassy, C. J.
  3. J. Geophys. Res. v.86 no.C11 An energetic total load sediment transport model for a plane sloping beach Bailard, J. A.
  4. Performance of 1992 nearshore berm disposal at Port Canaveral, Florida Bodge, K. R.
  5. Tech. Rep. D-77-22 Field study of the effects of storms on the stability and fate of dredged material in subaqueous disposal areas Bokuniewicz, H. J.;Gerbert, J.;Gordon, R. B.;Kaminsky, P.;Pilbean, C. C.;Reed, M.;Tuttle, C.
  6. J. Waterway, Port, Coastal and Ocean Engrg., ASCE v.121 no.5 Estimating landward migration of nearshore constructed sand mounds Dauglass, S. L.
  7. Water wave mechanics for engineers and scientists Dean, R. G.;Dalrymple, R. A.
  8. Philos. Trans. R. Soc. Lond., Ser. A v.315 Directional spectra of wind-generated waves Donelan, M. A.;Hamilton, J.;Hui, W. H.
  9. Proc. Coastal Sediments '91 Mound migration in deeper water and methods of categorizing active and stable depths Hands, E. B.;Allison, M. C.
  10. Tech. Rep. DRP-90-2 Results of monitoring the disposal berm at Sand Island, Alabama Hands, E. B.;Bradely, K. P.
  11. Proc. Dredging and Dredged Material Disposal, Dredging '84, ASCE An offshore mound constructed of dredged material Hands, E. B.;DeLoach, S. R.
  12. Transactions, ASCE v.122 Beach rehabilitation by fill and nourish-ment Hall, J. V.;Watts, G. M.
  13. Proc. Coastal Sediments '91 Analysis of transport processes on ocean disposal mound Hartman, G. L.;Ogston, A.;Hanson, M.
  14. Proc. Castal Sediments '91 Dredge spoil and inner shelf investigations off Tauranga Harbour, Bay of Plenty, New Zealand Healy, T.;Harms, C.;de Lange, W.
  15. J. Korean Soc.of Civil Engrs., KSCE v.2 no.3 Migration of offshore mound constructed by dredged material Lee, C. E.
  16. J. Korean Soc. of Civil Engrs., KSCE Critical wave height for predicting response of ocean disposal mound Lee, C.E.
  17. Proc. R. Soc. Lond,, Ser. A v.389 On the joint distribttion of wave periods and amplitudes in a random wave field Longuet-Higgins, M. S.
  18. Proc. Coastal Sediments '91 Design guidance for nearshore berm construction McLellan, T. N.;Kraus, N. C.
  19. Proc. 3rd National Conference on Beach Preservation Technology Benefits of nearshore placement McLellan, T. N.;Pope, M. K.;Burke, C. E.
  20. Proc. Coastal Dynamics '95 Monitoring results of a nearshore disposal berm Otay, E. N.
  21. J. Waterway, Port, Coastal and Ocean Engrg., ASCE v.122 no.3 Systematic analysis of long-term fate of disposed dredged material Scheffner, N. W.
  22. Proc. Coastal Sediments '77 Nearshore disposal: Onshore sediment transport Schwartz, R. K.;Musialowski, F. R.
  23. J. Coastal Res. v.7 no.2 Reducing costs and improving the industry: Goals of the dredging research program of the United States Sheall, I. L.
  24. Proc. 13th Coastal Engrg. Conf., ASCE Artificial nourishment of Copaca-bana beach Vera-Curz, D.
  25. Proc. 12th Coastal Engrg. Conf., ASCE Underwater mound for protection of Durban's beaches Zwamborn, J. A.;Fromme, G. A. W.;Fitzpatrick, J. B.