Application of Optimum Design Technique in Determining the Coefficient of Consolidation Using Piezocone Test

피에조 콘 시험을 이용정회원, 한국과학기술원 토목공학과 부교수, 정회원, 한국과학기술원 토목공학과 박사 후 과정한 망일계수 결정시 최적화 기법의 적용

  • Published : 1997.08.01

Abstract

For normally consolidated clay, several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation However, depending on the assumptions and analytical techniques, it could considerably vary even for a specific degree of consolidation. In this paper, a method is proposed to determine a consistent coefficient of consolidation over all ranges of degree of consolidation by applying the concept of the Optimum Design Technique. The initial excess pore pressure distribution is assumed to be obtainable by the successive spherical cavity expansion theory. The dissipation of pore pressure is simulated by means of two dimensional linear-uncoupled axisymmetric consolidation analysis. The minimization of the differences between the measured and the predicted excess pore pressures was carried by BFGS unconstrained optimum design algorithm with one dimensional golden section search technique. By analyzing numerical and real field examples, it can be found that the adopted optimum technique gives a consistent and convergent results.

피에조 콘의 소산시험을 이용한 정규 압밀 지반의 압밀계수 추정은 그간 많은 연구자들에 의하여 연구되어 왔으나 각 연구자들의 가정 사항과 해석 방법에 따라 특정한 압밀도에 대해서도 매우 넓은 범위의 이론적인 해들이 제시되어 왔다. 본 연구에서는 보다 현실적이면서 전 범위의 압밀도에 걸쳐서 일관성 있는 압밀계수를 구할 수 있도록 최적화 기법을 적용하였다. 콘 관입효과를 고려하기 위해 연속적인 구형 공동확장을 적용하므로써 이론적으로 얻어지는 간극수압의 분포와 관입 간극수압으로부터 초기 과잉간극수압의 분포를 결정하였으며 축대칭 선형비혼합 압밀이론을 사용하여 유발된 과잉간극수압의 소산효과를 모사하였다. 이와 같이 계산된 소산곡 선과 실제 계측된 소산곡선의 차이를 최소화시키기 위하여 비구속 최적화 알고리듬인 BFGS가 사용되었고 golden section 일차원 탐색법이 사용되었다. 검증 예제를 통하여 적용된 최적화 기법의 안정된 수렴성을 확인하였고 실제 예제에 적용함으로써 제안된 방법이 넓은 범위의 압밀도 범위에서 계측된 소산곡선과 잘 일치하는 압밀계수를 산정함으로써 매우 효과적임을 확인 할 수 있었다.

Keywords

References

  1. 한국지반공학회지 v.12 no.4 축대칭 비선형 압밀해석을 위한 지반 정수 값의 최적화 기법 김윤태;이승래
  2. Introduction of Optimum Design, McGraw-Hill Series Arora,J.S.
  3. MIT. Dept. of Civil Engineering, Report R.80-1 Pore Pressure Dissipation after Cone Penetration Baligh,M.M.;Levadoux,J.N.
  4. Dept. of Civil Engineering, Report R.75-56 No.517 Theory of Deep Site Static Cone Penetration Resistance Baligh,M.M.
  5. ESOPT Piezometer Probe Test in Cohesive Deposits Battaglio,M.;M.Jamiolkowski;R.Lancellotta;R.Maniscalco
  6. J. of Applied Physics v.12 General Theory of Three Dimensional Consolication Biot,M.A.
  7. Trans. of American Institute Mining and Met, Engineers v.198 Calculation of Unsteady State Gas Flow through Porous Media Bruce,G.H.;Peacemen,D.W.;Rachford,H.H.;Rice,J.D.
  8. Report No. TR51, Dept. of Civil Engineering, Univ. of Cambridge Stress and Pore Pressure Changes in Clay during and after the Expansion of a Cylindrical Cavity Carter,J.P.;Randolph,M.F.;Wroth,C.P.
  9. Numerische Mathematik v.4 Alternating Direction Methods for Three Space Variables Douglas,J.
  10. Soil and Foundation v.26 no.3 Piezoprobe Determination Coefficient of Consolidation Gupta,R.C.;J.L.Davidson
  11. Ph.D. Dissertation, Univ. of Florida Determination of the In situ Coefficient of Consolidation and Permeability of Submerged Soil using Electrical Piezoprobe Sounding Gupta,R.C.
  12. ISOPT Ⅰ v.2 Analysis of the Piezocone in Clay Houlsby,G.T.;Teh,C.I.
  13. ESOPT-Ⅰ v.2 no.2 Effective Stress Interpretation of In-situ Static Penetration Tests Janbu,I;Senneset,K.
  14. Soils and Foundation v.27 no.2 Discussion on Piezoprobe Determined Coefficient of Consolidation Kabir,M.G.;A.J.Lutenegger
  15. Can. Geotech. J. v.27 In situ Estimation of the Coefficient of Consolidation in Clays Kabir,M.G.;A.J.Lutenegger
  16. J. of Geotechnical Engineering v.120 no.1 Calibration Chamber Studies of Piezocone Test In Cohesive Soils Kurup,P.U.;G.Z.Voyiadjis;M.T.Tumay
  17. J. of Geotechnical Engineering v.112 no.7 Consolidation after Undrained Piezocone penetration Ⅱ:Interpretation Levadoux,J.N.;Baligh,M.M.
  18. Univ. of Cambridge, Dept. of Civil Engineering, Soils/TR 53 Driven Piles in Clay (1) Installation, Modeled as the Expansion of a Cylindrical Cavity Randolph,M.F.;Carter,J.P.;Wroth,C.P.
  19. Can. Geot. J. v.29 Estimating Coefficient of Consolidation from Piezocone Test Robertson(et al.)
  20. Proceedings of In-situ '86 ASCE, Specialty Conference Use of Piezometer Cone Data Robertson,P.K.;Campanella,R.G.;Gillespie,D.G.;Greig,J.
  21. Can. Geotech. J. v.20 Interpretation of Cone Penetration Tests:Clay Robertson,P.K.;R.G.Campanella
  22. ESOPT v.2 no.2 Penetration Pore Pressure Effects on Quasi-static Cone Bearing qc Schmertmann,J.H.
  23. Geotechnique v.25 no.1 Some Conditions under which Biot's Equations of Consolidation Reduce to Terzaghi's Equation Sills,G.C.
  24. ICSMFE;Geotechnique v.41 no.1 Evaluation of Field CPTU Dissipation Data in Overconsolidated Fine-Grained Soils;study of Cone Penetromenter Test in Clay Sully.J.P.;R.G.Campanella
  25. ASCE Specialty Conference on In-situ Measurement of Soil Properties The Pore Pressure Sounding Equipment Torstensson,B.A.
  26. Proceeding Geoteknikkdagen The pore pressure Probe Torstensson,B.A.
  27. J. of Geotechnical Engineering v.98 no.SM3 Expansion of Cavities in Infinite Soil Mass Vesic,A.S.