DOI QR코드

DOI QR Code

수정 횡변위장에 의한 강성과잉이 없는 직선 보 요소

Locking-free Straight Beam Element by a Modified Transverse Displacement Field

  • 이팔갑 (서울대학교 정밀기계설계공동연구소) ;
  • 신효철 (서울대학교 기계설계학과)
  • 발행 : 1992.12.01

초록

본 연구에서는 먼저 곡률요소에서와 같이 Timoshenko보를 기술하는 모든 변수 들을 평형방정식과 함께 고려할 때 각 변수들에 대한 새로운 해석이 가능함을 보이고 자 한다. 이는 횡변위장을 곡률로 수정함으로써 시작되는데 수정횡변위장을 사용할 경우, 보를 기술하는 모든 변수들이 Euler보의 그것들과 형태상으로 동일하게 나타나 며 수학적으로 볼 때 간결하면서도 새로운 접근 방법을 제시해 준다. 또한 이러한 수정횡변위장을 사용할 경우 순수변위에 기초하고 있는 전통적인 구조요소의 정식화과 정과 같은 과정을 거치게 되는 잇점이 있다. 한편, 직선 보요소의 정식화 과정에는 수정횡변위장의 형상함수로서 전통적인 Hermite 보 요소의 형상함수를 도입하였는데 이는 회전각의 장이 수정횡변위장의 미분치로 주어지기 때문이다.마지막 단계로서, 수정횡변위치가 포함된 절점에서의 변위벡터와 원횡변위치가 포함된 변위벡터 사이에 존재하는 변환행렬을 찾아 내었다.

The Formulation of a new Hermite straight beam element to eliminate the shear locking is presented. All the kinematic variables in Timoshenko beam are reinterpreted by the consideration of equilibrium equations together. It shows that when the modified transverse displacement field is used the Timoshenko beam looks apparently the same as the Euler beam. The element is formulated for the modified transverse displacement field to have the same interpolation scheme as that in the Hermite element. Transformation Matrix which relates a modified nodal vector with nonmodified one is also introduced to deal with general boundary conditions. Several examples are demonstrated and discussed for the purpose of verification of the concepts employed. The solutions obtained reveal that the element describes of the beam quite correctly, showing no locking and that it is also applicable to the analysis of both thin and thick beams.

키워드