Liquid Phase Adsorption Properties of Organo Surfur Compounds on Cation Exchanged Natural Zeolites

陽이온 交換한 天然 제올라이트에 依한 有機黃化合物의 液相吸着 特性

  • Kim, Jong-Taik (Department of Industrial Chemistry, Kyungpook National University) ;
  • Heo, Nam-Ho (Department of Industrial Chemistry, Kyungpook National University)
  • 김종택 (慶北大學校 工科大學 工業化學科) ;
  • 허남호 (慶北大學校 工科大學 工業化學科)
  • Published : 1984.06.20

Abstract

The adsorption properties of organo sulfur compounds on cation exchanged natural zeolites from n-heptane were investigated. The equilibrium adsorbed amounts were dependent upon the exchanged cation and the nature of organo sulfur compounds such as length, volume, electronical structure. The increasing orders of equilibrium adsorbed amounts were thiophene derivatives, disulfide, sulfide mercaptane and thiophene, benzothiaphene, dibenzothiophene. And $Co^{+2}$-zeolite was the most prominent adsorbant. Rate determining step of the adsorption at initial stage was intraparticle diffusion into the transitional pores of zeolite. These adsorption rates were dependent upon the bulkiness of adsorbate. Finally, preadsorbed water didn't affect these adsorption until the cation exchanged natural zeolite contained 2.26${\times}10^{-3}$ mol/g of water. It indicated that water preferentially occupied the micro pores of the cation exchanged natural zeolites.

陽이온 交換한 天然제올라이트에 依한 有機黃化合物의 液相吸着特性을 考察하였다. 平衡吸着量은 天然제올라이트의 交換한 陽이온과 吸着質인 有機黃化合物의 構造에 影響을 받고 있음을 알 수 있었다. 또한 平衡吸着量은 메르캅탄(mercaptane), 설파이드(sulfide), 디설파이드(disulfide), 치오펜(thiopen) 順으로 減小하였으며, 치오펜 誘導體의 경우는 ${\pi}$ 電子가 많아짐에 따라 吸着能은 교환 이온의 polarizing power에 比例하였다. 吸着速度로부터 有機黃化合物의 吸着은 pore 내의 擴散이 律速段階임을 알수 있었고, 水分과 같은 작은 吸着質은 micro pore에 吸着이 일어나는 反面, 有機黃化合物은 transitional-pore에 吸着이 일어났다.

Keywords

References

  1. J. Phys. Chem. v.78 L. D. Neff;S. C. Kitching
  2. Bull. Chem. Soc. Japan v.42 S. Kishida;S. Teranish
  3. Trans. Faraday Soc. v.58 J. M. Saleh;M. W. Roberts;C. Kamball
  4. J. Phys. Chem. v.66 G. D. Blyholder;D. O. Bowen
  5. J. Chem. Soc. v.603 E. B. Maxted;H. C. Evans
  6. Advan. Catalysis v.3 E. B. Maxted
  7. J. Phy. Chem. v.66 G. D. Blyholder;D. O. Bowen
  8. Zh. Fiz. Khim. v.50 no.8 V. I. Lygin;N. K. Lypina;A. D. Ulendeeva
  9. J. Chem. Soc. Faraday I v.73 C. H. Rochester;R. J. Terrell
  10. J. Chem. Phys. v.5 R. M. Badger;S. H. Bauer
  11. Inorg. Chem. v.6 C. H. Henrickson;D. R. Eyman
  12. Tetrahedron v.25 I. P. Roman;E. M. Guryyanova
  13. J. Colloid Interface Sci. v.57 no.1 P. Mars;M. Steijas
  14. Z. Chem. v.14 no.9 Wolf Friedrich
  15. Chem. Tech. (Leipzig) v.27 no.6 Wolf Friedrich;Hoese
  16. Khim. Teckhnol. v.9 L. I. Mikhal'skaya
  17. J. WCPF v.46 D. W. Guist;R. A. Conway;C. T. Lawson
  18. Sani. Eng. Div. v.2 W. J. Weber;J. C. Morris, Jr.
  19. Clay and Clay min. v.7 E. B. Kinter;S. D. Diamond
  20. Ann. v.265 I. Traube
  21. J. Amer. Chem. Soc. v.169 G. E. Boyd;A. W. Adamson;L. S. Myer