Change in the Binding Cooperativity of Ethidium with Calf Thymus DNA, Induced by Spermine Binding

Spermine에 依한 Ethidium의 Calf Thymus DNA와의 結合 Cooperativity 變化

  • Ko, Thong-Sung (Department of Chemistry, College of Sciences, Chungnam National University) ;
  • Huh, Joon (Department of Chemistry, College of Sciences, Chungnam National University) ;
  • Lee, Chan-Yong (Department of Chemistry, College of Sciences, Chungnam National University)
  • 고동성 (忠南大學校 理科大學 化學科) ;
  • 허준 (忠南大學校 理科大學 化學科) ;
  • 이찬용 (忠南大學校 理科大學 化學科)
  • Published : 1984.06.20

Abstract

At the spermine concentration to cover the number of the binding site of spermine 0.016 per nucleotide, the Hill coefficient of the ethidium binding to the calf thymus DNA was 1.7, while the value was 0.38 in the absence of the spermine. On the basis of the data, together with other present data on the viscometric titration of the DNA with spermine and anomalous absorbance-temperature profile at 260nm and viscosity-temperature profile, it can be speculated that allosteric propagation of the conformational transition induced by the binding of the spermine may be involved in the monomolecular collapse of the DNA to a condensed structure.

송아지 胸線 DNA의 nucleotide 당 spermine 0.016 분자의 비율로 結合되는 spermine 濃度에서 그 DNA와 ethidium과의 結合에 對한 Hill 係數는 1.7인 反面에 spermine이 存在하지 않는 條件에서는 그 Hill 係數가 0.38이었다. Spermine에 依한 DNA의 viscometric titration data, 260nm에서의 anomalous absorbance-temperature profile 및 粘性度-溫度 樣相과 더불어 이 data를 基礎로 하여 spermine 結合에 依하여 誘發되는 conformational transition의 allosteric propagation이 DNA의 凝縮된 構造로의 單分子的 collapse에 관여됨을 豫測할 수 있다.

Keywords

References

  1. Introduction to the Polyamines S. S. Cohen
  2. Annu. Rev. Biochem. v.45 C. W. Tabor;H. Tabor
  3. J. Bacteriol. v.94 A. Raina;M. Jansen;S. S. Cohen
  4. Acc. Chem. Res. v.15 B. Ganem
  5. J. Mol. Biol. v.42 M. Suwalsky;W. Traub;V. Shmueli;J. Subirana
  6. J. Biol. Chem. v.235 B. N. Ames;D. T. Dubin
  7. J. Mol. Biol. v.91 D. Kaiser;M. Syvaen;T. Masuda
  8. Proc. Natl. Acad. Sci. U.S.A. v.72 U. K. Laemmli
  9. Nature v.259 L. Gosule;J. A. Schellman
  10. J. Mol. Biol v.121 D. K. Chattoraj;L C. Gosule;J. A. Schellman
  11. Advances in Polyamine Research v.1 L. C. Gosule;D. K. Chattoraj;J. A. Schellman;R. A. Campbell(et al.)(Ed.)
  12. Biochemistry v.18 R. W. Wilson;V. A. Bloomfield
  13. Biopolymers v.22 T. J. Thomas;V. A. Bloomfield
  14. Biopolymers v.20 J. A. Subirana;J. L. Vives
  15. Q. Rev. Biophys. v.11 G. S. Manning
  16. Cold Spring Harbor Symp. Quant. Biol. v.38 L. S. Lerman
  17. Methods in Enzymology v.VI C. W. Tabor;S. M. Rosenthal;S. P. Colowick(ed.);N. O. Kaplan(ed.)
  18. Chungnam J. Sci. v.9 Thong-Sung Ko;Joon Huh;Pyung Keun Myung;Mun Kyeu Park
  19. Bull. Chem. Soc. Japan. v.37 M. Tsuboi
  20. Nature v.253 I. Flink;D. E. Pettijohn
  21. Biopolymers v.6 R. Glasser;E. J. Gabbay
  22. J. Korean Chem. Soc. v.26 Thong-Sung Ko;Joon Huh;Pyung-Keun Myung;Young Cho
  23. Proc. Natl. Acad. Sci. U.S.A. v.69 F. Pohl;T. M. Jovin;W. Baehn;J. J. Holbrook
  24. J. Biol. Chem. v.250 J. F. Burd;R. M. Wartell;J. B. Dodgson;R. D. Wells
  25. Nature v.278 M. Hogan;N. Dattagupta;D. M. Crothers
  26. Biopolymers v.6 D. M. Crothers
  27. Annu. Rev. Biochem. v.5 H. M. Sobell