Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives

$Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성

  • Shin, Yong-Deok (Department of Electrical Engineering WonKwang University) ;
  • Ju, Jin-Young (Department of Electrical Engineering WonKwang University)
  • Published : 1998.11.28

Abstract

The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

Keywords