• Title/Summary/Keyword: zooplankton species

Search Result 219, Processing Time 0.027 seconds

Studies on the Food Organisms of Bivalve, Mactra veneriformis in Shore of Kunsan (군산연안 동죽의 먹이생물에 대한 연구)

  • Ryou Dong-Ki;Kim Yong-Ho
    • Journal of Aquaculture
    • /
    • v.8 no.2
    • /
    • pp.99-115
    • /
    • 1995
  • The food organisms of bivalve, Mactra veneriformis Reeve were investigated, from August 1993 to July 1994, at an intertidal sandflat area in shore of Kunsan. In the digestive track of M. veneriformis, total 60 genera (120 species) were found and consisted of both 52 phytoplankton genera (31 Diatoms, 7 Dinophyceae, 6 Chrysophyceae, 5 Cyanophyceae, and 3 Chlorophyceae) and 8 zooplankton genera (4 Radiolaria, 2 Ciliata, and 2 Crustaceae). The number of planktons species from digestive track readed the peak in March and October, and that in August is the lowest. The dominant planktons of the environment and the digestive track of M veneriformis are not coincidence. These planktons were roughly divided into two tropes as round and bar. The former was less than $200{\mu}m$ in diameter and the latter less than $20{\mu}m$ in diameter and $500{\mu}m$ in length.

  • PDF

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Effects of Zooplankton Grazing on the Suppression of Harmful Algal Blooms by the Rotifer Brachionus calyciflorus in Freshwater Ecosystems

  • Baek, Seung-Ho;Hong, Sung-Su;Song, Shin-Young;Lee, Hae-Ok;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • To study the influence of the rotifer Brachionus calyciflorus on harmful algal bloom suppression, we focused on assessing the rotifer's abilities using several prey species : Microcystis aeruginosa, Synechocystis sp., Chlorella vulgaris and Coelastrum sp. of the warm-weather species and the cold-weather centric diatom Stephanodiscus hantzchii. Grazing effects and growth rates of rotifers B. calyciflorus were 94.5% and $1.29d^{-1}$, respectively, for Synechocystis sp., 87.4% and $0.60d^{-1}$, respectively, for M. aeruginosa, 95.2% and $0.65d^{-1}$, respectively, for C. $vulgaris^{TM}$, 78.6% and $0.45d^{-1}$, respectively, for C. vulgaris UTEX., 86.5% and $0.99d^{-1}$, respectively, for Coelastrum sp., and 82.6% and $0.40d^{-1}$, respectively, for S. hantzchii. Of these, although the growth of Synechocystis and Coelastrum was effectively suppressed by rotifer grazing, efficient suppression effects on Stephanodiscus blooms were unexpected. The present study revealed that reproduction of B. calyciflorus was greatly influenced by its food types in the initial stages and the efficiencies of bio-agents as sole food sources vary depending on the target algae and the agent.

Spatial and Temporal Distribution of Fish Larvae in the Southern Coast of Korea from Spring to Summer (봄과 여름철 남해안 자치어의 시·공간적 분포)

  • Moon, Seong Yong;Lee, Mi Hee;Jung, Kyung Mi;Kim, Heeyong;Jung, Jin Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.4
    • /
    • pp.461-477
    • /
    • 2022
  • We investigated the community structure and performed detailed characterization of fish larvae assemblages collected from the southern coast of Korea in the spring and summer of 2021. The total abundance of fish larvae varied from 193.6 to 1,915.6 ind. 10 m-3. The species were distributed across 10 orders with 23 families, and 41 taxa. The dominant taxa were Gobiidae spp., Engraulis japonicus, Nibea albiflora, Sebastiscus spp., Callionymus valenciennei, Pennahia argentata, Sebastes thompsoni, Parablennius yatabei, and Platycephalus indicus. Engraulis japonicus individuals were collected from April to August and their presence contributed greatly to the total abundance of fish larvae. The total number and abundance of species peaked in early summer and the Shannon-Weaver index was in the range 0.11-1.49. Redundancy analyses revealed that the major environmental factors affecting the fish larvae assemblage differed according to the dominant taxa. Water temperature, zooplankton density, and Paracalanus parvus s. l. density were the key factors affecting the spatial and temporal distribution of fish larvae in the southern coast of Korea in spring and summer.

The Seasonal Environmental Factors Affecting Copepod Community in the Anma Islands of Yeonggwang, Yellow Sea (황해 영광 안마 군도 해역의 요각류 출현 양상에 영향을 미치는 계절적 환경 요인)

  • Young Seok Jeong;Seok Ju Lee;Seohwi Choo;Yang-Ho Yoon;Hyeonseo Cho;Dae-Jin Kim;Ho Young Soh
    • Ocean and Polar Research
    • /
    • v.45 no.2
    • /
    • pp.43-55
    • /
    • 2023
  • This study was conducted to understand the seasonal patterns and variation of the copepod community in the Anma Islands of Yeonggwang, Yellow Sea, with a focus on seasonal surveys to assess the factors affecting their occurrence. Throughout the survey period, Acartia hongi, Paracalanus parvus s. l., and Ditrichocorycaeus affinis were dominant species, while Acartia ohtsukai, Acartia pacifica, Bestiolina coreana, Centropages abdominalis, Labidocera rotunda, Paracalanus sp., Tortanus derjugini, Tortanus forcipatus occurred differently by season and station. As a results of cluster analysis, the copepod communities were distinguished into three distinct groups: spring-winter, summer, and autumn. The results of this study showed that the occurrence patterns of copepod species can vary depending on environmental conditions (topographic, distance from the inshore, etc.), and their spatial occurrence patterns between seasons were controlled by water temperature and prey conditions. One of the physical mechanisms that can affect the distribution of zooplankton in the Yellow Sea is the behavior of the Yellow Sea Bottom Cold Water (YSBCW), which shows remarkable seasonal fluctuations. More detailed further studies are needed for clear grounds for mainly why to many Calanus sinicus in the central region of the Yellow Sea are seasonally moving to the inshore, what strategies to seasonally maintain the population, and support the possibilities of complex factors.

Stable Carbon and Nitrogen Isotopes of Sinking Particles in the Eastern Bransfield Strait (Antarctica)

  • Khim, Boo-Keun;Kim, Dong-Seon;Shin, Hyoung-Chul;Kim, Dong-Yup
    • Ocean Science Journal
    • /
    • v.40 no.3
    • /
    • pp.167-176
    • /
    • 2005
  • A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux $(49.2\;g\;m^{-2})$, among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low $\delta^{13}C$ values of settling particles result from effects on C-fixation processes at low temperature and the high $CO_2$ availability to phytoplankton. The correspondingly low $\delta^{l5}N$ values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The $\delta^{l5}N$ and $\delta^{l3}C$ values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous $\delta^{l5}N$ values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing $\delta^{l3}C$ values towards the unproductive period through the biomodification of the $\delta^{l3}C$ values in the food web, respiring preferentially and selectively $^{12}C$ atoms. Correspondingly, the increasing $\delta^{l5}N$ values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high $\delta^{l5}N$ values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.

Zooplankton Sample Variability in the Coastal Area: The Necessity for the Replicate and Time Dependent Sampling (연안역 동물 플랑크톤 시료의 변이: 반복 채집 및 시간별 채집의 필요성)

  • Park, Chul
    • 한국해양학회지
    • /
    • v.24 no.4
    • /
    • pp.165-171
    • /
    • 1989
  • To examine the sample variability of zooplankton, samples were collected at two stations in the nearshore off Anhung (Chungnam, Korea), using a NORPAC net (76 Cm diameter, 0.333 mm mesh size) for two days, April 5 and 6, 1989. The net was towed vertically to eliminate the source of variation due to vertical migration. During the period of 6 hours, triplicate sampling was done every one or two hour at each station. Species composition and abundances at two stations were not so different, but the abundances at each station varied greatly with respect to sampling time. Greater abundance at one sampling time ranged 2.3-8.7 times of smaller abundance at another sampling time. At the level of ${\alpha}=0.05$, however, mean abundances of different sampling time did not differ significantly from each other due to the large variance. It was believed that the large variance was caused by the time dependent effect of patchiness of which parameters were varied with time because of sea water movement. From the variation within the triplicate samples, it was considered that the abundance data obtained from single tow were not significantly different from the data in the range of 50-200% of those from single tow. From these results, the necessity for the replicate and time dependent sampling was indicated. In the nearshore like the sampling site of this study, it seemed to be better to reduce the number of stations for the replicate and time dependent sampling though the proper sampling scheme was to be decided based on the goal of the study.

  • PDF

The Relation Between Water Quality and Structure of Aquatic Ecosystem in Agriculture Reservoir, Otae-ji (농업용저수지인 오태지의 수생태계구조와 수질과의 관련성)

  • Seo, Jung-Kwan;Lee, Hae-Jin;Jeong, Hyun-Gi;Tak, Bo-Mi;Lee, Jae-Kwan;Kim, In-Taek;Lee, Jong-Eun;Hwang, Ui-Wook
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1407-1421
    • /
    • 2010
  • This study was carried out to elucidate the relation between water quality and structure of the aquatic ecosystem in the agriculture reservoir Otae-ji from January to December in 2009. The proportion of forest was 46.98%, which means that non-point sources are major contributor of water pollution in this area. The annual mean COD(Chemical Oxygen Demand) in Otae-ji was $3.6mgL^{-1}$, indicating, level II of environmental standards and the trophic state was mesotrophic. Although total phosporus concentration in the reservoir was high in August due to large inflow of nutrients from outside the reservoir during monsoon season, there was no break out of significant algal bloom in the summer. The seasonal succession of phytoplankton showed that the dinophyta dominated in the the spring, chlorophyta in the summer, chrysophyta and chlorophyta in the autumn and chrysophyta in the winter. In case of zooplankton, rotifers dominated in the most seasons, but cladoceran(Bosmina longirostris) dominated in June and copepod(Nauplii) in August. The macrophyte plants showed diverse species compositon consisted of 3 varieties, 24 species, 23 genera, 15 families and 14 orders. The macroinvertebrates also showed various FFG(Functional Feeding Groups) such as GC(Gathering-Collector), P(Predator), SH(Shedder), FC(Filter-Collector) and PP(Plant-Piercer). Ecosystem stability analysis using aquatic insects was classified as Group I, which has high resilience and resistance indices. A total of 14 species of fish was collected but exotic species such as Lepomis macrochirus and Micropterus salmoides were not found in Otae-ji. In conclusion, the preservation of healthy food wed in the reservoir ecosystem is closely related to water quality management as well as effective prevention of algal bloom by helping good material circulation in aquatic ecosystems.

Effects of Photoperiod Exchanges on the Growth of two Common Live Food Organisms (rotifer, Brachionus rotundiformis and Harpacticoida Copepoda, Tigriopus japonicus) in the Combination Cultures (Brachionus rotundiformis (rotifera)와 Tigriopus japonicus(copepoda; harpacticoida)의 혼합배양에 있어서 광주기 변화가 두 동물먹이생물의 증식에 미치는 영향)

  • Jung, Min-Min;Moon, Tae-Seok;Wi, Chong-Hwan;Ji, Young-Ju;Min, Kwang-Sik
    • Journal of Aquaculture
    • /
    • v.20 no.3
    • /
    • pp.168-172
    • /
    • 2007
  • Two zooplankton species Brachionus rotundiformis (rotifera) and Tigriopus japonicus (copepoda; harpacticoida) were commonly used as live food organisms in the marine larval rearing centers. The combination culture method of two live food organisms (B. rotundiformis and T. japonicus) was well known as very valuable for stable and mass cultures. In this study, we investigated the effects of photoperiod exchanges on the growth and interspecific relationship in the combination culture of two species. The results showed that, photoperiod condition can change copepod (and rotifer) density under the two species combination cultures. There is 200% higher maximum rotifer density on the 24L:0D photoperiod culture condition compare to 12L:12D condition. However, maximum density of copepod is observed highest on the 0L:24D photoperiod culture condition. In addition, it's differ in the culture densities of nauplii, copepodites and female carrying eggs on the each three photoperiod types.

AN OBSERVATION Of WATER QUALITY AND RED WATER IN STILL WATER FISH PONDS (정수양어지에서의 수질관찰과 적조현상(물변화)에 관한 보고)

  • KIM In-Bae;PARK Myeong Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.7 no.2
    • /
    • pp.69-78
    • /
    • 1974
  • A study on the contents of dissolved oxygen and phytoplankton in the pond water has been carried out to determine the water quality and to investigate the cause of red water in fish ponds at Pusan Fisheries College in 1972-1973. The results obtained are as follows : 1. Measured oxygen content during the period from 6th to 7th of August 1972 was: 23.95ppm ($328\%$ in saturation rate) in daytime and 0.39 ppm($5\%$) in the early morning in the water which contains heavy bloom of phytoplankton, on the other hand, in clear water the range of oxygen content was 8.72 to 6.58ppm. 2. The occurrences of red water in 1972-1973 were always caused by the sudden death of Synechocystis aquatilis (Cyanophyta) when the water temperature was very high ($30-33.5^{\circ}C$) and then high mortality of fish under rearing followed. 3. The phytoplankon observed during this study period was 133 species belonging to 55 genera in 23 families, and those of Chlorophyta was dominant in number of species, and Cyanophyta in quantity. 4. Zooplankton observed was 12 species belonging to 11 genera in 11 families, and they were very small both in number of species and in quantity compared to those of phytoplankton.

  • PDF