• Title/Summary/Keyword: zoonotic disease

Search Result 148, Processing Time 0.028 seconds

Survey of Zoonotic Trematode Metacercariae in Fish from Irrigation Canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, Republic of Korea

  • Sohn, Woon-Mok;Na, Byoung-Kuk;Cho, Shin-Hyeong;Lee, Hee Il;Ju, Jung-Won;Lee, Myoung-Ro;Lim, Eun-Joo;Son, Sung Yong;Ko, Eunmi;Choi, Jaeseok
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The infection status of zoonotic trematode metacercariae (ZTM) was investigated in total 568 freshwater fishes (19 species) from the irrigation canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, the Republic of Korea for 3 years (2018-2020). All fishes were examined using the artificial digestion method. The metacercariae of Clonorchis sinensis (CsMc) were detected in 180 (43.8%) out of 411 fish of positive species, and their infection intensity was 38 per fish infected (PFI). Especially, in 2 fish species, i.e., Pseudorasbora parva and Puntungia herzi, the prevalence was 82.1% and 31.3%, and the infection intensity with CsMc was 88 and 290 PFI, respectively. Metagonimus spp. metacercariae (MsMc) were found in 403 (74.1%) out of 544 fish of positive species, and their infection intensity was 62 PFI. In the pale chub, Zacco platypus, the prevalence of MsMc was 98.6%, and their infection intensity was 144 PFI. Centrocestus armatus metacercariae were detected in 171 (38.9%) out of 440 fish of positive species, and their infection intensity was 1,844 PFI. Echinostoma spp. metacercariae were found in 94 (19.6%) out of 479 fish of positive species, and their infection intensity was 3 PFI. Metorchis orientalis metacercariae were detected in 43 (29.3%) out of 147 fish of positive species, and their infection intensity was 4 PFI. By the present study, it has been confirmed that some species of ZTM, including CsMc and MsMc, are prevalent in fishes from the irrigation canal of Togyo-jeosuji in Cheorwon-gun, Gangwon-do, Korea.

Prevalence of Toxoplasma gondii in Stray Cats of Gyeonggi-do, Korea

  • Kim, Hye-Youn;Kim, Yun-Ah;Kang, Seung-Won;Lee, Ho-Sa;Rhie, Ho-Gun;Ahn, Hye-Jin;Nam, Ho-Woo;Lee, Sang-Eun
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.3
    • /
    • pp.199-201
    • /
    • 2008
  • Toxoplasma gondii is an obligate intracellular zoonotic protozoan with a worldwide distribution. It infects humans as well as a broad spectrum of vertebrate hosts. Cats and wild felidae play crucial roles in the epidemiology of toxoplasmosis. This study was performed to survey the prevalence of T. gondii infection among stray cats in the Gyeonggi-do, Republic of Korea. A total of 174 stray cat blood samples were collected from Gwacheon-si (n = 20), Bucheon-si (82), and Yangju-si (72). Positive sera for T. gondii were identified in 14 samples (8.1%) exclusively via the latex agglutination test, 28 (16.1%) via ELISA, and 23 (13.2%) via PCR analysis. The overall infection rate of female stray cats (29.2%) presented as higher than that of male cats (24.0%). This study suggests that T. gondii is widespread in the stray cat population of Gyeonggi-do, Korea. It is urgently needed to control urban stray cat population and to reduce the risk of zoonotic transmission of toxoplasmosis to other animal hosts and humans.

Endemicity of Zoonotic Trematode Metacercariae in Fish from Deokcheon-gang (River) in Sancheong-gun, Gyeongsangnam-do, Republic of Korea

  • Sohn, Woon-Mok;Na, Byoung-Kuk;Cho, Shin-Hyeong;Lee, Hee Il;Ju, Jung-Won;Lee, Myoung-Ro;Park, Jeong-Gil;Ahn, Jihee
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.5
    • /
    • pp.523-529
    • /
    • 2021
  • The endemicity of zoonotic trematode metacercariae (ZTM) was investigated with total 871 freshwater fishes (19 species) from Deokcheon-gang (a branch stream of Gyeongho-gang) in Sancheong-gun, Gyeongsangnam-do, Korea for 3 years (2018-2020). All fishes were examined with the artificial digestion method. The metacercariae of Clonorchis sinensis (CsMc) were detected in 233 (36.3%) out of 642 fish in 11 positive fish species (PFS), and their infection intensity was 27 per fish infected (PFI). Especially, in index fish, Puntungia herzi, of CsMc infection, prevalence was 64.2% and infection intensity was 37 PFI. Metagonimus spp. metacercariae (MsMc) were found in 760 (87.5%) out of 869 fish in 18 PFS and their infection intensity was 228 PFI. In sweet smelt, Plecoglossus altivelis, the prevalence of MsMc was 97.6% and their infection intensity was 3,570 PFI. Centrocestus armatus metacercariae were detected in 209 (29.4%) out of 710 fish in 8 PFS and their infection intensity was 1,361 PFI. Echinostoma spp. metacercariae were found in 293 (42.6%) out of 688 fish in 15 PFS and their infection intensity was 5 PFI. Metacercariae of Clinostomum complanatum and Metorchis orientalis were also detected in 2.7% and 21.2% fish in 4 PFS and their infection intensities were 3.1 and 3.4 PFI respectively. By the present study, it was confirmed that some species of ZTM including CsMc and MsMc are more or less prevalent in fishes from Deokcheon-gang in Sancheong-gun, Gyeongsangnam-do, Korea.

Prevalence and Infection Intensity of Zoonotic Trematode Metacercariae in Fish from Soyang-cheon (Stream), in Wanju-gun, Jeollabuk-do, Korea

  • Sohn, Woon-Mok;Na, Byoung-Kuk;Cho, Shin-Hyeong;Ju, Jung-Won;Kim, Cheon-Hyeon;Hwang, Min-Ah;No, Kyeong-Woo;Park, Jong-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.3
    • /
    • pp.265-271
    • /
    • 2021
  • We surveyed on the infection status of zoonotic trematode metacercariae (ZTM) in freshwater fishes from Soyang-cheon (a branch stream of Mangyeong-gang) in Wanju-gun, Jeollabuk-do, the Republic of Korea. A total of 927 fishes were individually examined with the artificial digestion method during 2013-2015 (462 fish in 15 spp.) and 2018-2019 (465 fish in 25 spp.). Clonorchis sinensis metacercariae were detected in 207 (31.4%) out of 659 fishes in 14 positive fish species (PFS), and their mean intensity was 114 per fish infected (PFI). Metagonimus spp. metacercariae were found in 302 (37.4%) out of 808 fishes in 21 PFS, and their mean intensity was 12 PFI. Centrocestus armatus metacercariae were detected in 222 (59.0%) out of 376 fishes in 12 PFS, and their mean intensity was 383 PFI. Echinostoma spp. metacercariae were found in 139 (22.1%) out of 628 fishes in 10 PFS, and their mean intensity was 7 PFI. Clinostomum complanatum metacercariae were detected in 14 (6.5%) out of 214 fishes in 4 PFS, and their mean intensity was 2.4 PFI. Metorchis orientalis metacercariae were detected in 36 (13.5%) out of 267 fishes in 5 PFS, and their mean intensity was 4.3 PFI. Conclusively, the prevalence and infection intensity of ZTM is generally not so high in fishes from Soyang-cheon. However, those of C. sinensis metacercariae are more or less higher in 2 fish species, Pungtungia herzi and Sarcocheilichthys variegatus wakiyae.

Isolation and identification of mosquito-borne zoonotic diseases in slaughterhouse in Daejeon

  • Youngju Kim;Gyurae Kim;Sunkyong Song;Youngshik Jung;Seojin Park;Sang-Joon Lee;Ho-Seong Cho;Yeonsu Oh
    • Korean Journal of Veterinary Service
    • /
    • v.46 no.2
    • /
    • pp.115-122
    • /
    • 2023
  • This study was performed to investigate the distribution of mosquito vectors related to the zoonotic disease in Daejeon. Samples were taken using a blacklight trap once a month from March to November 2021 at the slaughterhouse in Daejeon. A total of 820 mosquitoes were captured and classified into 5 genera and 8 species. Among the collected mosquitoes, 319 (38.9%) and 295 (35.93%) were Aedes vexans nipponii and Culex pipiens pallens, respectively, making them the dominant species. The overall number of mosquitoes collected started to increase from May and reached the largest value of 329 (40.12%) in June. Trapped mosquitoes are created 72 pools by environmental condition and by species. The pools were tested by PCR methods for 7 zoonotic pathogens. Flavivirus-positive products were confirmed by DNA sequencing. Japanese encephalitis viruses were detected in 3 pools collected from cow lairage (Culex pipiens pallens) in May, cow by-product processing room (Aedes vexans nipponii) in June and cow lairage (Mansonia uniformis) in June. Culex flavivirus were detected in 4 pools. Based on the results of this study, it is considered that continous surveillence of mosquitoes in livestock assembly facilities (slaughterhouse) should be performed for controlling mosquito populations and mediating disease spread by mosquitoes.

High Endemicity with Clonorchis sinensis Metacercariae in Fish from Yongjeon-cheon (Stream) in Cheongsong-gun, Gyeongsangbuk-do, Korea

  • Sohn, Woon-Mok;Na, Byoung-Kuk;Cho, Shin-Hyeong;Lee, Hee Il;Lee, Myoung-Ro;Ju, Jung-Won;Kim, Gou Ok
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.97-101
    • /
    • 2021
  • The infection status with Clonorchis sinensis metacercariae (CsMc) was examined in freshwater fishes from Yongjeon-cheon (a branch of Nakdong-gang) located in Cheongsong-gun, Gyeongsangbuk-do, the Republic of Korea (Korea). A total of 750 fishes in 19 species were examined by the artificial digestion method for 2 years (2019 and 2020). CsMc were detected in 378 (51.4%) out of 735 fishes in 14 species (73.7%), and the infection intensity was 666 per fish infected. In 2019, CsMc were found in 172 (68.0%) out of 253 fishes in 10 species, and the infection intensity was 565 per fish infected. In 2020, CsMc were detected in 206 (62.2%) out of 331 fishes in 10 species, and the infection intensity was 751 per fish infected. The other zoonotic trematode, ie. Metagonimus spp., Centrocestus armatus, Echinostoma spp. and Clinostomum complanatum, metacercariae were also detected in fishes from the survey streams, but their endemicities were relatively low. Conclusively, it was first confirmed that CsMc are highly endemic in fishes from Yongjeon-cheon in Cheongsong-gun, Gyeongsangbuk-do, Korea.

Molecular subtyping and antimicrobial susceptibility of Streptococcus dysgalactiae subspecies equisimilis isolates from clinically diseased pigs

  • Oh, Sang-Ik;Kim, Jong Wan;Kim, Jongho;So, Byungjae;Kim, Bumseok;Kim, Ha-Young
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.57.1-57.11
    • /
    • 2020
  • Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) acts as an etiological agent for lameness, neurological signs, and high mortality in pigs. Despite its importance in pig industries and zoonotic potential, little is known about the effects of this pathogen. Objectives: This study aimed to determine the molecular characteristics and antimicrobial resistance of SDSE strains isolated from diseased pigs. Methods: A total 11 SDSE isolates were obtained from diseased pigs. Bacterial identification, PCR for virulence genes, emm typing, and antimicrobial resistance genes, multilocus sequence typing, and antimicrobial susceptibility test were performed. Results: Nine isolates were from piglets, and 8 showed lameness, sudden death, or neurological signs. The isolates were PCR-positive for sla (100%), sagA (100%), and scpA (45.5%), and only 1 isolate amplified the emm gene (stL2764). Eight different sequence types were detected, categorized into 2 clonal complexes and 4 singletons. All the isolates in this study were included in a small cluster, which also contained other strains derived from humans and horses. The minimum inhibitory concentrations for the tested beta-lactams were low, while those for macrolides, tetracyclines, and fluoroquinolones were relatively high. PCR analysis of the macrolide and tetracycline resistance genes demonstrated that the isolates carried erm(B) (18.2%, n = 2), mef(A/E) (9.1%, n = 1), tet(M) (18.2%, n = 2), and tet(O) (90.2%, n = 10). Two isolates presented a mutation in parC, which is associated with fluoroquinolone resistance. Conclusion: This study provided insight into swine-derived SDSE, as it is related to veterinary medicine, and elucidated its zoonotic potential, in the context of molecular epidemiology and antimicrobial resistance in public health.

Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses

  • Cheol Gyun Kim;Won Kyong Kim;Narae Kim;Young Jin Pyung;Da-Jeong Park;Jeong-Cheol Lee;Chong-Su Cho;Hyuk Chu;Cheol-Heui Yun
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.47.1-47.16
    • /
    • 2023
  • Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.

Cytokine Production in Canine PBMC after Bartonella Henselae Infection (Bartonella Henselae 감염 후의 개 말초혈액단핵구에서의 사이토카인 양상)

  • Choi, Eun-Wha;Lee, Jong-Hwa;Koo, Hye-Cheong;Park, Yong-Ho;Youn, Hwa-Young
    • Journal of Veterinary Clinics
    • /
    • v.27 no.4
    • /
    • pp.311-314
    • /
    • 2010
  • Bartonella henselae is the causative agent of cat scratch disease. Although cats are the main zoonotic reservoirs of Bartonella spp., unusual cases of cat scratch disease caused by a domestic dog scratch have been recently reported. For the in vivo B. henselae infection, eight dogs were inoculated intradermally with $2{\times}10^8CFU$ of B. henselae Houston-1 suspended in 1 ml of phosphate buffered saline on day 0 and subsequent injections of the same amount given intradermally on days 21, 28, 36, 58 and 64. After in vivo canine B. henselae infection was confirmed by nested PCR, the IFN-$\gamma$ levels of the culture supernatant of PBMC stimulated with B. henselae was significantly higher in the B. henselae-PCR positive group than the B. henselae-PCR negative group. Our results showed that the canine immune responses against B. henselae were different from those of cats. Th1 activation by B. henselae stimulation was characterized in dog peripheral blood mononuclear cells, whereas Th2 activation was reported in B. henselae-infected cats.

Future Management Strategies for Zoonoses Based on One Health (원헬스 기반 인수공통감염병의 미래 관리 전략)

  • Lee, Kwan
    • Journal of agricultural medicine and community health
    • /
    • v.44 no.1
    • /
    • pp.39-42
    • /
    • 2019
  • Zoonoses are the diseases that are transmitted to human being from vertebrate animals either from livestock animals or from wildlife. Recently, zoonoses are increasingly common as a result of incremental human-animal contact. Propagative infections in wild animals and livestock are transmitted to human beings who are encountered with them. In general, wild animals can transmit infectious agents to livestock, and then livestock further transmit them to human being is a simple model of on how zoonotic diseases get transmitted to human being. This model emphasizes the importance of early detection of zoonoses by surveillance at its incipient stage. Cooperation between the respective ministries plays an important role in the identification of zoonoses and planning for the formulation of better preventive and control policy and strategy. We will be able to predict the occurrence of zoonotic diseases in human on the basis of disease trends in wildlife and livestock once when we obtain the surveillance data and data generated by respective ministries through sound cooperation and collaboration.