DOI QR코드

DOI QR Code

Molecular subtyping and antimicrobial susceptibility of Streptococcus dysgalactiae subspecies equisimilis isolates from clinically diseased pigs

  • Oh, Sang-Ik (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Jong Wan (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Jongho (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • So, Byungjae (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency) ;
  • Kim, Bumseok (College of Veterinary Medicine, Jeonbuk National University) ;
  • Kim, Ha-Young (Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency)
  • Received : 2020.01.31
  • Accepted : 2020.04.16
  • Published : 2020.07.31

Abstract

Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) acts as an etiological agent for lameness, neurological signs, and high mortality in pigs. Despite its importance in pig industries and zoonotic potential, little is known about the effects of this pathogen. Objectives: This study aimed to determine the molecular characteristics and antimicrobial resistance of SDSE strains isolated from diseased pigs. Methods: A total 11 SDSE isolates were obtained from diseased pigs. Bacterial identification, PCR for virulence genes, emm typing, and antimicrobial resistance genes, multilocus sequence typing, and antimicrobial susceptibility test were performed. Results: Nine isolates were from piglets, and 8 showed lameness, sudden death, or neurological signs. The isolates were PCR-positive for sla (100%), sagA (100%), and scpA (45.5%), and only 1 isolate amplified the emm gene (stL2764). Eight different sequence types were detected, categorized into 2 clonal complexes and 4 singletons. All the isolates in this study were included in a small cluster, which also contained other strains derived from humans and horses. The minimum inhibitory concentrations for the tested beta-lactams were low, while those for macrolides, tetracyclines, and fluoroquinolones were relatively high. PCR analysis of the macrolide and tetracycline resistance genes demonstrated that the isolates carried erm(B) (18.2%, n = 2), mef(A/E) (9.1%, n = 1), tet(M) (18.2%, n = 2), and tet(O) (90.2%, n = 10). Two isolates presented a mutation in parC, which is associated with fluoroquinolone resistance. Conclusion: This study provided insight into swine-derived SDSE, as it is related to veterinary medicine, and elucidated its zoonotic potential, in the context of molecular epidemiology and antimicrobial resistance in public health.

Keywords

Acknowledgement

This work was supported by the Animal and Plant Quarantine Agency, Ministry of Agriculture, Food, and Rural Affairs of the Republic of Korea.

References

  1. Brandt CM, Spellerberg B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin Infect Dis. 2009;49(5):766-772. https://doi.org/10.1086/605085
  2. Pinho MD, Erol E, Ribeiro-Goncalves B, Mendes CI, Carrico JA, Matos SC, et al. Beta-hemolytic Streptococcus dysgalactiae strains isolated from horses are a genetically distinct population within the Streptococcus dysgalactiae taxon. Sci Rep. 2016;6:31736. https://doi.org/10.1038/srep31736
  3. Ciszewski M, Szewczyk EM. Potential factors enabling human body colonization by animal Streptococcus dysgalactiae subsp. equisimilis strains. Curr Microbiol. 2017;74(5):650-654. https://doi.org/10.1007/s00284-017-1232-z
  4. Preziuso S, Pinho MD, Attili AR, Melo-Cristino J, Acke E, Midwinter AC, et al. PCR based differentiation between Streptococcus dysgalactiae subsp. equisimilis strains isolated from humans and horses. Comp Immunol Microbiol Infect Dis. 2014;37(3):169-172. https://doi.org/10.1016/j.cimid.2014.04.001
  5. Schrieber L, Towers R, Muscatello G, Speare R. Transmission of Streptococcus dysgalactiae subsp. equisimilis between child and dog in an Aboriginal Australian community. Zoonoses Public Health. 2014;61(2):145-148. https://doi.org/10.1111/zph.12057
  6. Silva LG, Genteluci GL, Correa de Mattos M, Glatthardt T, Sa Figueiredo AM, Ferreira-Carvalho BT. Group C Streptococcus dysgalactiae subsp. equisimilis in south-east Brazil: genetic diversity, resistance profile and the first report of human and equine isolates belonging to the same multilocus sequence typing lineage. J Med Microbiol. 2015;64(Pt 5):551-558. https://doi.org/10.1099/jmm.0.000052
  7. Kasuya K, Yoshida E, Harada R, Hasegawa M, Osaka H, Kato M, et al. Systemic Streptococcus dysgalactiae subspecies equisimilis infection in a Yorkshire pig with severe disseminated suppurative meningoencephalomyelitis. J Vet Med Sci. 2014;76(5):715-718. https://doi.org/10.1292/jvms.13-0526
  8. Kawata K, Minakami T, Mori Y, Katsumi M, Kataoka Y, Ezawa A, et al. rDNA sequence analyses of Streptococcus dysgalactiae subsp. equisimilis isolates from pigs. Int J Syst Evol Microbiol. 2003;53(Pt 6):1941-1946. https://doi.org/10.1099/ijs.0.02666-0
  9. Moreno LZ, da Costa BL, Matajira CE, Gomes VT, Mesquita RE, Silva AP, et al. Molecular and antimicrobial susceptibility profiling of Streptococcus dysgalactiae isolated from swine. Diagn Microbiol Infect Dis. 2016;86(2):178-180. https://doi.org/10.1016/j.diagmicrobio.2016.07.020
  10. Oh SI, Kim JW, Jung JY, Chae M, Lee YR, Kim JH, et al. Pathologic and molecular characterization of Streptococcus dysgalactiae subsp. equisimilis infection in neonatal piglets. J Vet Sci. 2018;19(2):313-317. https://doi.org/10.4142/jvs.2018.19.2.313
  11. Gottschalk M. Streptococcosis. In: Zimmerman JJ, Karriker LA, Ramirez A, Schwartz KJ, Stevenson GW, editors. Disease of Swine, 10th ed. Ames: John Wiley & Sons, Inc.; 2012, 841-855.
  12. Zoric M, Sjolund M, Persson M, Nilsson E, Lundeheim N, Wallgren P. Lameness in piglets. Abrasions in nursing piglets and transfer of protection towards infections with Streptococci from sow to offspring. J Vet Med B Infect Dis Vet Public Health. 2004;51(6):278-284. https://doi.org/10.1111/j.1439-0450.2004.00777.x
  13. Lother SA, Demczuk W, Martin I, Mulvey M, Dufault B, Lagace-Wiens P, et al. Clonal clusters and virulence factors of group C and G Streptococcus causing severe infections, Manitoba, Canada, 2012-2014. Emerg Infect Dis. 2017;23(7):1079-1088. https://doi.org/10.3201/eid2307.161259
  14. Tanaka D, Isobe J, Watahiki M, Nagai Y, Katsukawa C, Kawahara R, et al. Genetic features of clinical isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield's group A antigen. J Clin Microbiol. 2008;46(4):1526-1529. https://doi.org/10.1128/JCM.02188-07
  15. Lu B, Fang Y, Huang L, Diao B, Du X, Kan B, et al. Molecular characterization and antibiotic resistance of clinical Streptococcus dysgalactiae subsp. equisimilis in Beijing, China. Infect Genet Evol. 2016;40:119-125. https://doi.org/10.1016/j.meegid.2016.01.030
  16. Ahmad Y, Gertz RE Jr, Li Z, Sakota V, Broyles LN, Van Beneden C, et al. Genetic relationships deduced from emm and multilocus sequence typing of invasive Streptococcus dysgalactiae subsp. equisimilis and S. canis recovered from isolates collected in the United States. J Clin Microbiol. 2009;47(7):2046-2054. https://doi.org/10.1128/JCM.00246-09
  17. McMillan DJ, Bessen DE, Pinho M, Ford C, Hall GS, Melo-Cristino J, et al. Population genetics of Streptococcus dysgalactiae subspecies equisimilis reveals widely dispersed clones and extensive recombination. PLoS One. 2010;5(7):e11741. https://doi.org/10.1371/journal.pone.0011741
  18. McMillan DJ, Kaul SY, Bramhachari PV, Smeesters PR, Vu T, Karmarkar MG, et al. Recombination drives genetic diversification of Streptococcus dysgalactiae subspecies equisimilis in a region of streptococcal endemicity. PLoS One. 2011;6(8):e21346. https://doi.org/10.1371/journal.pone.0021346
  19. Malhotra-Kumar S, Lammens C, Piessens J, Goossens H. Multiplex PCR for simultaneous detection of macrolide and tetracycline resistance determinants in streptococci. Antimicrob Agents Chemother. 2005;49(11):4798-4800. https://doi.org/10.1128/AAC.49.11.4798-4800.2005
  20. Kawamura Y, Fujiwara H, Mishima N, Tanaka Y, Tanimoto A, Ikawa S, et al. First Streptococcus agalactiae isolates highly resistant to quinolones, with point mutations in gyrA and parC. Antimicrob Agents Chemother. 2003;47(11):3605-3609. https://doi.org/10.1128/AAC.47.11.3605-3609.2003
  21. Perez-Sancho M, Vela AI, Garcia-Seco T, Gonzalez S, Dominguez L, Fernandez-Garayzabal JF. Usefulness of MALDI-TOF MS as a diagnostic tool for the identification of Streptococcus species recovered from clinical specimens of pigs. PLoS One. 2017;12(1):e0170784. https://doi.org/10.1371/journal.pone.0170784
  22. Katsumi M, Kataoka Y, Takahashi T, Kikuchi N, Hiramune T. Biochemical and serological examination of beta-hemolytic streptococci isolated from slaughtered pigs. J Vet Med Sci. 1998;60(1):129-131. https://doi.org/10.1292/jvms.60.129
  23. Vecht U, van Leengoed LA, Verheijen ER. Streptococcus suis infections in pigs in the Netherlands (Part I). Vet Q. 1985;7(4):315-321. https://doi.org/10.1080/01652176.1985.9694005
  24. Loubinoux J, Plainvert C, Collobert G, Touak G, Bouvet A, Poyart C, et al. Adult invasive and noninvasive infections due to Streptococcus dysgalactiae subsp. equisimilis in France from 2006 to 2010. J Clin Microbiol. 2013;51(8):2724-2727. https://doi.org/10.1128/JCM.01262-13
  25. Baracco GJ, Bisno AL. Group C and group G streptococcal infections: epidemiologic and clinical aspects. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, editors. Gram-Positive Pathogens, 2nd ed. Washington, D.C.: American Society of Microbiology; 2006, 222-229.
  26. Ikebe T, Murayama S, Saitoh K, Yamai S, Suzuki R, Isobe J, et al. Surveillance of severe invasive group-G streptococcal infections and molecular typing of the isolates in Japan. Epidemiol Infect. 2004;132(1):145-149. https://doi.org/10.1017/S0950268803001262
  27. Tsai CT, Chi CY, Ho CM, Lin PC, Chou CH, Wang JH, et al. Correlation of virulence genes to clinical manifestations and outcome in patients with Streptococcus dysgalactiae subspecies equisimilis bacteremia. J Microbiol Immunol Infect. 2014;47(6):462-468. https://doi.org/10.1016/j.jmii.2013.08.019
  28. Yamaguchi Y, Yamaguchi T, Fukushima S, Nakamura I, Imura R, Harada Y, et al. Clinical and bacteriological investigation of Streptococcus dysgalactiae subsp. equisimilis infections treated at Tokyo Medical University Hospital. J Tokyo Med Univ. 2017;75(2):208-218.
  29. Sitkiewicz I, Nagiec MJ, Sumby P, Butler SD, Cywes-Bentley C, Musser JM. Emergence of a bacterial clone with enhanced virulence by acquisition of a phage encoding a secreted phospholipase A2. Proc Natl Acad Sci U S A. 2006;103(43):16009-16014. https://doi.org/10.1073/pnas.0607669103
  30. Wajima T, Morozumi M, Hanada S, Sunaoshi K, Chiba N, Iwata S, et al. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis, Japan. Emerg Infect Dis. 2016;22(2):247-254. https://doi.org/10.3201/eid2202.141732
  31. Kim S, Byun JH, Park H, Lee J, Lee HS, Yoshida H, et al. Molecular epidemiological features and antibiotic susceptibility patterns of Streptococcus dysgalactiae subsp. equisimilis isolates from Korea and Japan. Ann Lab Med. 2018;38(3):212-219. https://doi.org/10.3343/alm.2018.38.3.212
  32. Srifuengfung S, Tribuddharat C, Sapcharoen S, Nitayanon P. Prevalence of the M protein gene in group C and group G streptococci isolated from patients in Thailand. Jpn J Infect Dis. 2017;70(1):108-110. https://doi.org/10.7883/yoken.JJID.2015.616
  33. Yoshida H, Matsui H, Murayama SY, Takada Y, Matsuo K, Takahashi T, et al. A CD46 transgenic mouse model for studying the histopathology of arthritis caused by subcutaneous infection with Streptococcus dysgalactiae subspecies equisimilis. J Med Microbiol. 2011;60(Pt 12):1860-1868. https://doi.org/10.1099/jmm.0.034108-0
  34. Savini V, Catavitello C, Talia M, Manna A, Pompetti F, Di Bonaventura G, et al. β-Lactam failure in treatment of two group G Streptococcus dysgalactiae subsp. equisimilis Pharyngitis patients. J Clin Microbiol. 2008;46(2):814-816. https://doi.org/10.1128/JCM.00985-07
  35. Smith M, Do TN, Gibson JS, Jordan D, Cobbold RN, Trott DJ. Comparison of antimicrobial resistance phenotypes and genotypes in enterotoxigenic Escherichia coli isolated from Australian and Vietnamese pigs. J Glob Antimicrob Resist. 2014;2(3):162-167. https://doi.org/10.1016/j.jgar.2014.03.008