• 제목/요약/키워드: zoom lens

검색결과 137건 처리시간 0.02초

Zoom Lens Design for a 10x Slim Camera using Successive Procedures

  • Park, Sung-Chan;Lee, Sang-Hun
    • Journal of the Optical Society of Korea
    • /
    • 제17권6호
    • /
    • pp.518-524
    • /
    • 2013
  • This study presents a new design method for a zoom lens, in which real lens groups are designed successively to combine to form a lens modules zoom system. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.2 to 39.9 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. After obtaining the lens module zoom system, the real lens groups are successively, not separately, designed to get a zoom lens system. Compared to the separately designed real lens groups, this approach can give a better starting zoom lens and save time. The successively designed groups result in a zoom system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a compact zoom system with a depth of 12 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a mobile zoom camera having high zoom ratio of 10x.

Design of an 8x Four-group Inner-focus Zoom System Using a Focus Tunable Lens

  • Lee, Daye;Park, Sung-Chan
    • Journal of the Optical Society of Korea
    • /
    • 제20권2호
    • /
    • pp.283-290
    • /
    • 2016
  • This study presents an 8x four-group inner-focus zoom lens with one-moving group for a compact camera by use of a focus tunable lens (FTL). In the initial design stage, we obtained the powers of lens groups by paraxial design based on thin lens theory, and then set up the zoom system composed of four lens modules. Instead of numerically analytic analysis for the zoom locus, we suggest simple analysis for that using lens modules optimized. After replacing four groups with equivalent thick lens modules, the power of the fourth group, which includes a focus tunable lens, is designed to be changed to fix the image plane at all positions. From this design process, we can realize an 8x four-group zoom system having one moving group by employing a focus tunable lens. The final designed zoom lens has focal lengths of 4 mm to 32 mm and apertures of F/3.5 to F/4.5 at wide and tele positions, respectively.

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • 제20권1호
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

Unified Analytic Calculation Method for Zoom Loci of Zoom Lens Systems with a Finite Object Distance

  • Ryu, Jae Myung;Oh, Jeong Hyo;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • 제18권2호
    • /
    • pp.134-145
    • /
    • 2014
  • The number of lens groups in modern zoom camera systems is increased above that of conventional systems in order to improve the speed of the auto focus with the high quality image. As a result, it is difficult to calculate zoom loci using the conventional analytic method, and even the recent one-step advanced numerical calculation method is not optimal because of the time-consuming problem generated by the iteration method. In this paper, in order to solve this problem, we suggest a new unified analytic method for zoom lens loci with finite object distance including infinite object distance. This method is induced by systematically analyzing various distances between the object and other groups including the first lens group, for various situations corresponding to zooming equations of the finite lens systems after using a spline interpolation for each lens group. And we confirm the justification of the new method by using various zoom lens examples. By using this method, we can easily and quickly obtain the zoom lens loci not only without any calculation process of iteration but also without any limit on the group number and the object distance in every zoom lens system.

Compact Zoom Lens Design for a 5x Mobile Camera Using Prism

  • Park, Sung-Chan;Lee, Sang-Hun;Kim, Jong-Gyu
    • Journal of the Optical Society of Korea
    • /
    • 제13권2호
    • /
    • pp.206-212
    • /
    • 2009
  • This study presents the compact zoom lens with a zoom ratio of 5x for a mobile camera by using a prism. The lens modules and aberrations are applied to the initial design for a four-group inner-focus zoom system. An initial design with a focal length range of 4.4 to 22.0 mm is derived by assigning the first-order quantities and third-order aberrations to each module along with the constraints required for optimum solutions. We separately designed a real lens for each group and then combined them to establish an actual zoom system. The combination of the separately designed groups results in a system that satisfies the basic properties of the zoom system consisting of the original lens modules. In order to have a slim system, we directly inserted the right-angle prism in front of the first group. This configuration resulted in a more compact zoom system with a depth of 8 mm. The finally designed zoom lens has an f-number of 3.5 to 4.5 and is expected to fulfill the requirements for a slim mobile zoom camera having high zoom ratio of 5x.

컴퓨터 비젼을 이용한 정밀 측정 장비의 줌 렌즈 캘리브레이션 (Zoom Lens Calibration for a Video Measuring System)

  • 한광수;최준수;최기원
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.57-71
    • /
    • 2005
  • 본 논문에서는 컴퓨터 비전을 이용하는 정밀 측정 장비인 VMS(video measuring system)에서 줌을 서보 모터(servo motor)로 제어하는 자동화된 줌 렌즈를 보정하기 위한 효율적인 방법을 소개한다. VMS에서 사용하는 줌 렌즈는 초점과 조리개가 고정되어 있기 때문에 줌의 변화에 영향을 받는 이미지의 중심과 픽셀의 가로, 세로 크기에 대하여 보정한다. 줌 렌즈의 모든 줌제어 단계에 대하여, 모든 카메라 변수 값들을 계산하기 위해서는 많은 계산량과 저장공간이 필요하다. 이런 문제점들을 해결하기 위하여, 효율적인 계산과 저장공간을 위하여 최소 단계의 줌 단계에 대한 보정으로도 모든 영역의 줌 단계에 대한 보정 값들을 계산할 수 있는 방법을 사용해서 VHS에서 효율적이고 간단한 줌 렌즈 캘리브레이션 방법을 제안한다.

  • PDF

Design of an 8× Four-group Zoom System without a Moving Group by Considering the Overall Length

  • Park, Sung Min;Lee, Jea-Woo;Park, Sung-Chan
    • Current Optics and Photonics
    • /
    • 제6권1호
    • /
    • pp.104-113
    • /
    • 2022
  • We present a method to count the overall length of the zoom system in an initial design stage. In a zoom-lens design using the concept of the group, it has been very hard to precisely estimate the overall length at all zoom positions through the previous paraxial studies. To solve this difficulty, we introduce Teq as a measure of the total track length in an equivalent zoom system, which can be found from the first order parameters obtained by solving the zoom equations. Among many solutions, the parameters that provide the smallest Teq are selected to construct a compact initial zoom system. Also, to obtain an 8× four-group zoom system without moving groups, tunable polymer lenses (TPLs) have been introduced as a variator and a compensator. The final designed zoom lens has a short overall length of 29.99 mm, even over a wide focal-length range of 4-31 mm, and an f-number of F/3.5 at wide to F/4.5 at tele position, respectively.

비선형 줌-렌즈 왜곡 모델을 이용한 비디오 영상에서의 줌-렌즈 왜곡 보정 (Zoom Lens Distortion Correction Of Video Sequence Using Nonlinear Zoom Lens Distortion Model)

  • 김대현;신형철;오주현;남승진;손광훈
    • 방송공학회논문지
    • /
    • 제14권3호
    • /
    • pp.299-310
    • /
    • 2009
  • 본 논문은 줌-렌즈로 취득한 비디오 영상에 대해서 줌-렌즈의 왜곡을 자동으로 보상할 수 있는 새로운 방법을 제안하였다. 먼저, 초점거리의 증가에 따라 렌즈의 왜곡 계수가 비선형적으로 단조 감소하는 특징으로부터 초점거리와 렌즈 왜곡 계수로 표현되는 비선형 줌-렌즈 왜곡 모델을 정의하였다. 그리고 취득한 비디오 영상으로부터 몇 장의 샘플 영상을 선정하고, 이 샘플영상에 대한 초점거리와 렌즈 왜곡 계수는 기존의 방법들을 이용하여 측정하였다. 이렇게 측정한 초점거리와 렌즈 왜곡 계수들로 부터 줌-렌즈 왜곡 모델을 최적화 시켰다. 최적화된 줌-렌즈 왜곡 모델은 각 비디오 영상의 초점거리를 입력으로 하여 렌즈 왜곡계수를 자동으로 계산할 수 있다. 본 논문에서 제안한 방법은 다양한 실사 영상과 비디오 영상에 적용하여 그 성능을 검증하였으며, 화질의 열화 없이 영상의 왜곡을 보상할 수 있었다.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • 제19권6호
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Athermal Design and Performance Verification of an LWIR Zoom Lens for Drones

  • Kwang-Woo Park;Sung-Chan Park
    • Current Optics and Photonics
    • /
    • 제8권4호
    • /
    • pp.366-374
    • /
    • 2024
  • This paper presents an optimum method for determining the parameters to athermalize a long-wavelength infrared (LWIR) zoom camera by introducing the defocus sensitivity analysis. To effectively find parameters that significantly affect thermal defocus, we simulated athermal analysis with temperature changes for all variables. Consequently, we found that the optimum parameter to correct thermal defocus is the compensation lens, and its movements with temperature at each zoom position are obtained from the simulated athermal analysis. To verify the efficiency of our athermal approach, we performed actual athermal tests in a broad temperature range at each zoom position. The simulated athermal analysis provides the initial position of the compensation lens at the corresponding temperature and zoom position. Then the compensation lens is elaboratively moved to serve the highest live contrast ratio (LCR) for the target. This experiment shows that the compensation lens locations in the actual test are closely matched to those in the simulated athermal analysis. In addition, two outdoor tests conducted in two different environments confirm that the autofocus system suggested in this study performs well at all zoom positions. Using the proposed athermal analysis approach in this paper, we efficiently realize an athermal system over the specified temperature and zoom ranges.