• Title/Summary/Keyword: zones

Search Result 3,691, Processing Time 0.027 seconds

Element Dispersion and Wallrock Alteration from Samgwang Deposit (삼광광상의 모암변질과 원소분산)

  • Yoo, Bong-Chul;Lee, Gil-Jae;Lee, Jong-Kil;Ji, Eun-Kyung;Lee, Hyun-Koo
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.177-193
    • /
    • 2009
  • The Samgwang deposit consists of eight massive mesothermal quartz veins that filled NE and NW-striking fractures along fault zones in Precambrian granitic gneiss of the Gyeonggi massif. The mineralogy and paragenesis of the veins allow two separate discrete mineralization episodes(stage I=quartz and calcite stage, stage II-calcite stage) to be recognized, temporally separated by a major faulting event. The ore minerals are contained within quartz and calcite associated with fracturing and healing of veins that occurred during both mineralization episodes. The hydrothermal alteration of stage I is sericitization, chloritization, carbonitization, pyritization, silicification and argillization. Sericitic zone occurs near and at quartz vein and include mainly sericite, quartz, and minor illite, carbonates and chlorite. Chloritic zone occurs far from quartz vein and is composed of mainly chlorite, quartz and minor sericite, carbonates and epidote. Fe/(Fe+Mg) ratios of sericite and chlorite range 0.45 to 0.50(0.48$\pm$0.02) and 0.74 to 0.81(0.77$\pm$0.03), and belong to muscovite-petzite series and brunsvigite, respectiveIy. Calculated $Al_{IV}$-FE/(FE+Mg) diagrams of sericite and chlorite suggest that this can be a reliable indicator of alteration temperature in Au-Ag deposits. Calculated activities of chlorite end member are $a3(Fe_5Al_2Si_3O_{10}(OH)_6$=0.0275${\sim}$0.0413, $a2(Mg_5Al_2Si_3O_{10}(OH)_6$=1.18E-10${\sim}$7.79E-7, $a1(Mg_6Si_4O_{10}(OH)_6$=4.92E-10${\sim}$9.29E-7. It suggest that chlorite from the Samgwang deposit is iron-rich chlorite formed due to decreasing temperature from high temperature(T>450$^{\circ}C$). Calculated ${\alpha}Na^+$, ${\alpha}K^+$, ${\alpha}Ca^{2+}$, ${\alpha}Mg^{2+}$ and pH values during wallrock alteration are 0.0476($400^{\circ}C$), 0.0863($350^{\circ}C$), 0.0154($400^{\circ}C$), 0.0231($350^{\circ}C$), 2.42E-11($400^{\circ}C$), 7.07E-10($350^{\circ}C$), 1.59E-12($400^{\circ}C$), 1.77E-11($350^{\circ}C$), 5.4${\sim}$6.4($400^{\circ}C$), 5.3${\sim}$5.7($350^{\circ}C$)respectively. Gain elements(enrichment elements) during wallrock alteration are $TiO_2$, $Fe_2O_3(T)$,CaO, MnO, MgO, As, Ag, Cu, Zn, Ni, Co, W, V, Br, Cs, Rb, Sc, Bi, Nb, Sb, Se, Sn and Lu. Elements(Ag, As, Zn, Sc, Sb, Rb, S, $CO_2$) represents a potential tools for exploration in mesothermal and epithermal gold-silver deposits.

Anatomical Studies on Tumorous Tissue Formed in a Stem of Ailanthus altissima Swingle by Artificial Banding and Its Subsequent Removing Treatment -Characters of Individual Elements- (인위적(人爲的)인 밴드결체(結締) 및 해체처리(解締處理)로 형성(形成)된 가죽나무(Ailanthus altissima Swingle) 수간(樹幹)의 종양조직(腫瘍組織)에 관한 해부학적(解剖學的) 연구(硏究) -조직(組織) 구성세포(構成細胞)의 특성(特性)-)

  • Eom, Young Geun;Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.3
    • /
    • pp.287-301
    • /
    • 1989
  • A tree of Ailanthus altissima Swingle was fastened with a plastic band, 19mm wide, around the stem 180cm above ground level and was left to grow under this condition for one year, By removal of this band the tumorous tissue gradually developed and the tree bearing distinct tumorous tissue, an overgrowth surrounding the stem, was harvested two years after the band removal. For the investigation of this tumorous part and its comparison with adjacent normal parts in the anatomical features of individual elements, the tumorous part and parts directly and 40cm above and below the tumorous part were obtained from the tree. The tumor wood having remarkably wider growth increment occurred in the 3rd growth ring the first year after removal of the fastened band, and the barrier zone which delimited the discolored wood from the normal-colored wood inwards appeared u1 the intra-2nd growth ring produced during the fastened period in the tumorous part and the false ring-like zones equivalent to barrier Zone were shown in the normal-colored 2nd growth rings of the parts directly and 40cm above and below the tumorous part, as well. The tumor wood, the 3rd growth ring, and proportion of the 2nd growth ring formed after barrier zone in the tumorous part shared common characteristics in the irregular growth ring boundary, misshapen and shorter individual fibers and vessel elements, and large ray widths and heights. The springwood pores were smaller in diameter in the tumor wood, and the larger radial and smaller tangential diameters of summerwood solitary pores and individual pores consisting of pore multiples in proportion of the 2nd growth ring formed after the barrier zone were transformed into near-isodiametric in the tumor wood, the 3rd growth ring, in the tumorous part. Only in proportion of the 2nd growth ring formed after the barrier zone were transformed into near-isodiametric in the tumor wood, the 3rd growth ring, in the tumorous part, ray densities greatly increased. And the massive tumor wood was caused not by cell size but by cell number because the radial and tangential diameters of fibers in the tumor wood, the 3rd growth ring, in the tumorous part were not sufficiently different from those in the same aged growth rings of the directly and 40cm above and below the tumorous part.

  • PDF

A study on Operation Rules of Korean Air Defence Identification Zone (한국 방공식별구역 운영규칙에 관한 고찰)

  • Kwon, Jong-Pil;Lee, Yeong H.
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.2
    • /
    • pp.189-217
    • /
    • 2017
  • Declaration of Air Defense and Identification Zones started with the United States in 1950, which was followed by declaration of KADIZ by the Republic of Korea in 1951. Initial ADIZ were solely linked with air defense missions, but their roles have changed as nations around the globe manifested a tendency to expand their influence over maritime resources and rights. In particular, China declared ADIZ over the East China Sea in October 2013 and forced all passing aircraft to submit flight plan to ATC or military authority, saying failure of submission will be followed by armed engagement. China announced it would declare another zone over the South China Sea despite the ongoing conflict in the area, clearly showing ADIZ's direct connection with territorial claim and EEZ and that it serves as a zone within which a nation can execute its rights. The expanded KADIZ, which was expanded in Dec 15, 2013 in response to Chinese actions, overlaps with the Chinese ADIZ over the East China Sea and the Japanese ADIZ. The overlapping zone is an airspace over waters where not only the Republic of Korea but also of China and Japan argue to be covering their continental shelf and EEZ. Military conventions were signed to prevent contingencies among the neighboring nations while conducting identifications in KADIZ, including the overlapping zone. If such military conventions and practice of air defense identification continue to be respected among states, it is under the process of turning into a regional customary law, although ADIZ is not yet recognized by international law or customary law. Moreover, identification within ADIZ is carried out by military authorities of states, and misguided customary procedures may cause serious negative consequences for national security since it may negatively impact neighboring countries in marking the maritime border, which calls for formulation of operation rules that account for other state activities and military talks among regional stake holders. Legal frameworks need to be in place to guarantee freedom of flights over international seas which UN Maritime Law protects, and laws regarding military aircraft operation need to be supplemented to not make it a requirement to submit flight plan if the aircraft does not invade sovereign airspace. Organizational instructions that require approval of Chairman of Joint Chiefs of Staff for entrance and exit of ADIZ for military aircraft need to be amended to change the authority to Minister of National Defense or be promoted to a law to be applicable for commercial aircraft. Moreover, in regards to operation and management of ADIZ, transfer of authority should be prohibited to account for its evolution into a regional customary law in South East Asia. In particular, since ADIZ is set over EEZ, military conventions that yield authority related to national security should never be condoned. Among Korea, China, Japan and Russia, there are military conventions that discuss operation and management of ADIZ in place or under negotiation, meaning that ADIZ is becoming a regional customary law in North East Asia region.

  • PDF

Alteration and Mineralization in the Xiaoxinancha Porphyry Copper Deposit, Yianbin, China: Fluid Inclusion and Sulfur Isotope Study (중국 연변 쇼시난차 반암동 광상의 광화작용 및 변질작용: 유체포유물 및 황동위원소 연구)

  • Seong-Taek Yun;Chil-Sup So;Bai-Lu Jin;Chul-Ho Heo;Seung-Jun Youm
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • The Xiaoxinancha Cu-Au deposit in the Jilin province, located in NNE 800 km of Beijing, is hosted by diorite. The ore mineralization of Xiaoxinancha Cu-Au deposit show a stockwork occurrence that is concentrated on the potassic and phyllic alteration zones. The Xiaoxinancha Cu-Au deposit in the south is being mined with its reserves grading 0.8% Cu, 3.64 g/t Au and 16.8 g/t Ag and in the north, grading 0.63% Cu, 3.80 g/t Au and 6.8 glt Ag. The alteration assemblage occurs as a supergene blanket over deposit. Hydrothermal alteration at the Xiaoxinancha Cu-Au deposit is centered about the stock and was extensively related to the emplacement of the stock. Early hydrothermal alteration was dominantly potassic and followed by propylitic alteration. Chalcocite, often associated with hematite, account for the ore-grade copper, while chalcopyrite, bornite, quartz, epidote, chlorite and calcite constitute the typical gangue assemblage. Other minor opaque phases include pyrite, marcasite, native gold, electrum, hessite, hedleyite, volynskite, galenobismutite, covellite and goethite. Fluid inclusion data indicate that the formation of this porphyry copper deposit is thought to be a result of cooling followed by mixing with dilute and cooler meteoric water with time. In stage II vein, early boiling occurred at 497$^{\circ}$C was succeeded by the occurrence of halite-bearing type III fluid inclusion with homogenization temperature as much as 100$^{\circ}$C lower. The salinities of type 1II fluid inclusion in stage II vein are 54.3 to 66.9 wt.% NaCI + KCI equiv. at 383$^{\circ}$ to 495$^{\circ}$C, indicating the formation depth less than 1 km. Type I cupriferous fluids in stage III vein have the homogenization temperatures and salinity of 168$^{\circ}$ to 365$^{\circ}$C and 1.1 to 9.0 wt.% NaCI equiv. These fluid inclusions in stage III veins were trapped in quartz veins containing highly fractured breccia, indicating the predominance of boiling evidence. This corresponds to hydrostatic pressure of 50 to 80 bars. The $\delta$$^{34}S$ value of sulfide minerals increase slightly with paragenetic time and yield calculated $\delta$$^{34}S_{H2S}$ values of 0.8 to 3.7$\textperthousand$. There is no mineralogical evidence that fugacity of oxygen decreased, and it is thought that the oxygen fugacity of the mineralizing fluids have been buffered through reaction with magnetite. We interpreted the range of the calculated $\delta$$^{34}S_{H2S}$ values for sulfides to represent the incorporation of sulfur from two sources into the Xiaoxinancha Cu-Au hydrothermal fluids: (1) an isotopically light source with a $\delta$$^{34}S$ value of I to 2$\textperthousand$, probably a Mesozoic granitoid related to the ore mineralization. We can infer from the fact that diorite as the host rock in the Xiaoxinancha Cu-Au deposit area intruded plagiogranite; (2) an isotopically heavier source with a $\delta$$^{34}S$ value of > 4.0$\textperthousand$, probably the local porphyry.

Occurrence and Chemical Composition of W-Bearing Rutile from the Unsan Au Deposit (운산 금 광상에서 산출되는 함 텅스텐 금홍석의 산상과 화학조성)

  • Yoo, Bong Chul
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • The Unsang gold deposit has been one of the three largest deposits (Daeyudong and Kwangyang) in Korea. The deposit consists of Au-bearing quartz veins filling fractures along fault zones in Precambrian metasedimentary rock and Jurassic Porphyritic granite, which suggests that it might be an orogenic-type. Based on its mineral assemblages and quartz textures, quartz veins are classified into 1)galena-quartz, 2)pyrrhotite-quartz, 3)pyrite-quartz, 4)pegmatic quartz, 5)muscovite-quartz, and 6)simple quartz vein types. The pyrite-quartz vein type we studied shows the following alteration features: sericitization, chloritization, and silicification. The quartz vein contains minerals including white quartz, white mica, chlorite, pyrite, rutile, calcite, monazite, zircon, and apatite. Rutile with euhedral or medium aggregate occur at mafic part from laminated quartz vein. Two types of rutile are distinguishable in BSE image, light rutile is texturally later than dark rutile. Chemical composition of rutile has 89.69~98.71 wt.% (TiO2), 0.25~7.04 wt.% (WO3), 0.30~2.56 wt.% (FeO), 0.00~1.71 wt.% (Nb2O5), 0.17~0.35 wt.% (HfO2), 0.00~0.30 wt.% (V2O3), 0.00~0.35 wt.% (Cr2O3) and 0.04~0.25 wt.% (Al2O3), and light rutile are higher WO3, Nb2O5 and FeO compared to the dark rutile. It indicates that dark rutile and light rutile were formed at different stage. The substitution mechanisms of dark rutile and light rutile are suggested as followed : dark rutile [(V3+, Cr3+) + (Nb5+, Sb5+) ↔ 2Ti4+, 4Cr3+ (or 2W6+) ↔ 3Ti4+ (W6+ ↔ 2Cr3+), V4+ ↔ Ti4+], light rutile [2Fe3+ + W6+ ↔ 3Ti4+, 3Fe2+ + W6+ ↔ Ti4+ + (V3+, Al3+, Cr3+) +Nb5+], respectively. While the dark rutile was formed by cations including V3+, V4+, Cr3+, Nb5+, Sb5+ and W6+ by regional metamorphism of hostrock, the postdating light rutile was formed by redistribution of cations from predating dark rutile and addition of Fe2+ and W6+ from Au-bearing hydrothermal fluid during ductile shear.

Effects of Soil Organic Matter Contents, Paddy Types and Agricultural Climatic Zone on CH4 Emissions from Rice Paddy Field (벼 논에서 토양 유기물 함량, 논 유형 및 농업기후대가 CH4 배출에 미치는 영향)

  • Ko, Jee-Yeon;Lee, Jae-Saeng;Woo, Koan-Sik;Song, Seok-Bo;Kang, Jong-Rae;Seo, Myung-Chul;Kwak, Do-Yeon;Oh, Byeong-Gun;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.887-894
    • /
    • 2011
  • To evaluate the effects of abiotic factors of paddy fields on greenhouse gases (GHGs) emissions from rice paddy fields, $CH_4$ emission amounts were investigated from rice paddy fields by different soil organic matter contents, paddy types, and agricultural climatic zone in Yeongnam area during 3 years. $CH_4$ emission amounts according to soil organic matter contents in paddy field were conducted at having different contents of 5 soil organic matters fields (23.6, 28.7, 31.0, 34.5, and $38.0g\;kg^{-1}$), The highest $CH_4$ emission amount was recorded in the highest soil organic matters plot of $38.0g\;kg^{-1}$. High correlation coefficient (r=$0.963^{**}$) was obtained between $CH_4$ emissions from paddy fields and their soil organic matter contents. According to paddy field types, $CH_4$ emission amounts were investigated at 4 different paddy fields as wet paddy, sandy paddy, immature paddy, and mature paddy. The highest $CH_4$ emissions was recorded in wet paddy (100%) and followed as immature paddy 64.0%, mature paddy 46.8%, and sandy paddy 23.8%, respectively. For the effects of temperature on $CH_4$ emissions from paddy fields, 4 agricultural climatic zones were investigated, which were Yeongnam inland zone (YIZ), eastern coast of central zone (ECZ), plain area of Yeongnam inland mountainous zone (PMZ), and mountainous area of Yeongnam inland mountainous zone (MMZ). The order of $CH_4$ emission amounts from paddy fields by agricultural climatic zone were YIZ (100%) > ECZ (94.6%) > PMZ (91.6%) > MMZ (78.9%). The regression equation between $CH_4$ emission amounts from paddy fields and average air temperature of Jul. to Sep. of agricultural climatic zone was y = 389.7x-4,287 (x means average temperature of Jul. to Sep. of agricultural climatic zone, $R^2=0.906^*$)

Occurrence and Chemical Composition of White Mica from Wallrock Alteration Zone of Janggun Pb-Zn Deposit (장군 연-아연 광상의 모암변질대에서 산출되는 백색운모의 산상 및 화학조성)

  • Bong Chul, Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.469-484
    • /
    • 2022
  • The Janggun Pb-Zn deposit has been known one of the four largest deposits (Yeonhwa, Shinyemi, Uljin) in South Korea. The geology of this deposit consists of Precambrian Weonnam formation, Yulri group, Paleozoic Jangsan formation, Dueumri formation, Janggum limestone formation, Dongsugok formation, Jaesan formation and Mesozoic Dongwhachi formation and Chungyang granite. This Pb-Zn deposit is hydrothermal replacement deposit in Paleozoic Janggum limestone formation. The wallrock alteration that is remarkably recognized with Pb-Zn mineralization at this deposit consists of mainly rhodochrositization and dolomitization with minor of pyritization, sericitization and chloritization. Wallrock alteration is divided into the five zones (Pb-Zn orebody -> rhodochrosite zone -> dolomite zone -> dolomitic limestone zone -> limestone or dolomitic marble) from orebody to wallrock. The white mica from wallrock alteration occurs as fine or medium aggregate associated with Ca-dolomite, Ferroan ankerite, sideroplesite, rutile, apatite, arsenopyrite, pyrite, sphalerite, galena, quartz, chlorite and calcite. The structural formular of white mica from wallrock alteration is (K0.77-0.62Na0.03-0.00Ca0.03-0.00Ba0.00Sr0.01)0.82-0.64(Al1.72-1.48Mg0.48-0.20Fe0.04-0.01Mn0.03-0.00Ti0.01-0.00Cr0.00As0.01-0.00Co0.03-0.00Zn0.03-0.00Pb0.05-0.00Ni0.01-0.00)2.07-1.92 (Si3.43-3.33Al0.67-0.57)4.00O10(OH1.94-1.80F0.20-0.06)2.00. It indicated that white mica from wallrock alteration has less K, Na and Ca, and more Si than theoretical dioctahedral micas. The white micas from wallrock alteration of Janggun Pb-Zn deposit, Yeonhwa 1 Pb-Zn deposit and Baekjeon Au-Ag deposit, and limestone of Gumoonso area correspond to muscovite and phengite and white mica from wallrock alteration of Dunjeon Au-Ag deposit corresponds to muscovite. Compositional variations in white mica from wallrock alteration of these deposits and limeston of Gumoonso area are caused by mainly phengitic or Tschermark substitution mechanism (Janggun Pb-Zn deposit), mainly phengitic or Tschermark substitution and partly illitic substitution mechanism (Yeonhwa 1 Pb-Zn deposit, Dunjeon Au-Ag deposit and Baekjeon Au-Ag deposit), and mainly phengitic or Tschermark substitution and partly illitic substitution or Na+ <-> K+ substitution mechanism (Gumoonso area).

A Study on the Identifying OECMs in Korea for Achieving the Kunming-Montreal Global Biodiversity Framework - Focusing on the Concept and Experts' Perception - (쿤밍-몬트리올 글로벌 생물다양성 보전목표 성취를 위한 우리나라 OECM 발굴방향 연구 - 개념 고찰 및 전문가 인식을 중심으로 -)

  • Hag-Young Heo;Sun-Joo Park
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.4
    • /
    • pp.302-314
    • /
    • 2023
  • This study aims to explore the direction for Korea's effective response to Target 3 (30by30), which can be said to be the core of the Kunming-Montreal Global Biodiversity Framework (K-M GBF) of the Convention on Biological Diversity (CBD), to find the direction of systematic OECM (Other Effective area-based Conservation Measures) discovery at the national level through a survey of global conceptual review and expert perception of OECM. This study examined ① the use of Korean terms related to OECM, ② derivation of determining criteria reflecting global standards, ③ deriving types of potential OECM candidates in Korea, and ④ considerations for OECM identification and reporting to explore the direction for identifying systematic, national-level OECM that complies with global standards and reflects the Korean context. First, there was consensus for using Korean terminology that reflects the concept of OECM rather than simple translations, and it was determined that "nature coexistence area" was the most preferred term (12 people) and had the same context as CBD 2050 Vision of "a world of living in harmony with nature." This study suggests utilizing four criteria (1. No protected areas, 2. Geographic boundaries, 3. Governance/management, and 4. Biodiversity value) that reflect OECM's core characteristics in the first-stage selection process, carrying out the consensus-building process (stage 2) with the relevant agencies, and adding two criteria (3-1 Effectiveness and sustainability of governance and management and 4-1 Long-term conservation) and performing the in-depth diagnosis in stage 3 (full assessment for reporting). The 28 types examined in this study were generally compatible with OECMs (4.45-6.21/7 points, mean 5.24). In particular, the "Conservation Properties (6.21 points)" and "Conservation Agreements (6.07 points)", which are controlled by National Nature Trust, are shown to be the most in line with the OECM concept. They were followed by "Buffer zone of World Natural Heritage (5.77 points)", "Temple Forest (5.73 points)", "Green-belt (Restricted development zones, 5.63 points)", "DMZ (5.60 points)", and "Buffer zone of biosphere reserve (5.50 point)" to have high potential. In the case of "Uninhabited Islands under Absolute Conservation", the response that they conformed to the protected areas (5.83/7 points) was higher than the OECM compatibility (5.52/7 points), it is determined that in the future, it would be preferable to promote the listing of absolute unprotected islands in the Korea Database on Protected Areas (KDPA) along with their surrounding waters (1 km). Based on the results of a global OECM standard review and expert perception survey, 10 items were suggested as considerations when identifying OECM in the Korean context. In the future, continuous research is needed to identify the potential OECMs through site-level assessment regarding these considerations and establish an effective in-situ conservation system at the national level by linking existing protected area systems and identified OECMs.

Occurrence and Chemical Composition of Ti-bearing Minerals from Drilling Core (No.04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 함 티타늄 광물들의 산상과 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.3
    • /
    • pp.185-197
    • /
    • 2023
  • The Gubong Au-Ag deposit consists of eight lens-shaped quartz veins. These veins have filled fractures along fault zones within Precambrian metasedimentary rock. This has been one of the largest deposits in Korea, and is geologically a mix of orogenic-type and intrusion-related types. Korea Mining Promotion Corporation drilled into a quartz vein (referred to as the No. 6 vein) with a width of 0.9 m and a grade of 27.9 g/t Au at a depth of -728 ML by drilling (No. 90-12) in the southern site of the deposit, To further investigate the potential redevelopment of the No. 6 vein, another drilling (No. 04-1) was carried out in 2004. In 2004, samples (wallrock, wallrock alteration and quartz vein) were collected from the No. 04-1 drilling core site to study the occurrence and chemical composition of Ti-bearing minerals (ilmenite, rutile). Rutile from mineralized zone at a depth of -275 ML occur minerals including K-feldspar, biotite, quartz, calcite, chlorite, pyrite in wallrock alteration zone. Ilmenite and rutile from ore vein (No. 6 vein) at a depth of -779 ML occur minerals including white mica, chlorite, apatite, zircon, quartz, calcite, pyrrhotite, pyrite in wallrock alteration zone and quartz vein. Based on mineral assemblage, rutile was formed by hydrothermal alteration (chloritization) of Ti-rich biotite in the wallrock. Chemical composition of ilmenite has maximum values of 0.09 wt.% (HfO2), 0.39 wt.% (V2O3) and 0.54 wt.% (BaO). Comparing the chemical composition of rutile at a depth -275 ML and -779 ML, Rutile at a depth of -779 ML is higher contents (WO3, FeO and BaO) than rutile at a depth of -275 ML. The substitutions of rutile at a depth of -275 ML and -779 ML are as followed : rutile at a depth of -275 ML Ba2+ + Al3+ + Hf4+ + (Nb5+, Ta5+) ↔ 3Ti4+ + Fe2+, 2V4+ + (W5+, Ta5+, Nb5+) ↔ 2Ti4+ + Al3+ + (Fe2+, Ba2+), Al3+ + V4++ (Nb5+, Ta5+) ↔ 2Ti4+ + 2Fe2+, rutile at a depth of -779 ML 2 (Fe2+, Ba2+) + Al3+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + (V4+, Hf4+), Fe2+ + Al3+ + Hf 4+ + (W5+, Nb5+, Ta5+) ↔ 2Ti4+ + V4+ + Ba2+, respectively. Based on these data and chemical composition of rutiles from orogenic-type deposits, rutiles from Gubong deposit was formed in a relatively oxidizing environment than the rutile from orogenictype deposits (Unsan deposit, Kori Kollo deposit, Big Bell deposit, Meguma gold-bearing quartz vein).

Occurrence and Chemical Composition of Chlorite and White Mica from Drilling Core (No. 04-1) at Gubong Au-Ag Deposit Area, Republic of Korea (구봉 금-은 광상일대 시추코아(04-1)에서 산출되는 녹니석과 백색운모의 산상 및 화학조성)

  • Bong Chul Yoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.273-288
    • /
    • 2023
  • The Gubong Au-Ag deposit, which has been one of the largest deposits (Unsan, Daeyudong, Kwangyang) in Korea, consists of eight lens-shaped quartz veins (a mix of orogenic-type and intrusion-related types) that filled fractures along fault zones within Precambrian metasedimentary rock. Korea Mining Promotion Corporation found a quartz vein (referred to as the No. 6 vein with a grade of 27.9 g/t Au and a width of 0.9 m) at a depth of -728 ML by drilling (No. 90-12) conducted in 1989. Korea Mining Promotion Corporation conducted drilling (No. 04-1) in 2004 to investigate the redevelopment's possibility of the No. 6 vein. The author studied the occurrence and chemical composition of chlorite and white mica using wallrock, wallrock alteration and quartz vein samples collected from the No. 04-1 drilling core in 2004. The alteration of studied samples occurs chloritization, sericitization, silicification and pyritization. Chlorite and white mica from mineralized zone at a depth of -275 ML occur with quartz, K-feldspar, calcite, rutile and pyrite in wallrock alteration zone and quartz vein. Chlorite and white mica from ore vein (No. 6 vein) at a depth of -779 ML occur with quartz, calcite, apatite, zircon, rutile, ilmenite, pyrrhotite and pyrite in wallrock alteration zone and quartz vein. Chlorite from a depth of -779 ML has a higher content of Al and Mg elements and a lower content of Si and Fe elements than chlorite from a depth of -275 ML. Also, Chlorites from a depth of -275 ML and -779 ML have higher content of Si element than theoretical chlorite. Compositional variation in chlorite from a depth of -275 ML was mainly caused by phengitic or Tschermark substitution [Al3+,VI + Al3+,IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], but compositional variation from a depth of -779 ML was mainly caused by octahedral Fe2+ <-> Mg2+ (Mn2+) substitution. The interlayer cation site occupancy (K+Na+Ca+Ba+Sr = 0.76~0.82 apfu, 0.72~0.91 apfu) of white mica from a depth of -275 ML and -779 ML have lower contents than theoretical dioctahedral micas, but octahedral site occupancy (Fe+Mg+Mn+Ti+Cr+V+Ni = 2.09~2.13 apfu, 2.06~2.14 apfu) have higher contents than theoretical dioctahedral micas. Compositional variation in white mica from a depth of -275 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV], illitic substitution and direct (Fe3+)VI <-> (Al3+)VI substitution. But, compositional variation in white mica from a depth of -779 ML was caused by phengitic or Tschermark substitution [(Al3+)VI + (Al3+)IV <-> (Fe2+ or Mg2+)VI + (Si4+)IV] and direct (Fe3+)VI <-> (Al3+)VI substitution.