• Title/Summary/Keyword: zircon U-Pb dating

Search Result 34, Processing Time 0.021 seconds

Detrital zircon U-Pb ages of the uppermost Jinju Formation in the Natural Monument No. 534 'Tracksite of Pterosaurs, Birds, and Dinosaurs in Hotandong, Jinju', Korea

  • Chae, Yong-Un;Lim, Jong Deock;Kim, Cheong-Bin;Kim, Kyung Soo;Ha, Sujin;Lim, Hyoun Soo
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.367-380
    • /
    • 2020
  • LA-MC-ICP-MS zircon U-Pb dating was conducted to constrain the timing of fossil formation and the depositional age of the uppermost Jinju Formation located in Natural Monument No. 534 (Tracksite of Pterosaurs, Birds, and Dinosaurs in Hotandong, Jinju), and 87 Cretaceous, 1 Precambrian, and 2 Jurassic zircons were obtained from 90 valid analytical points. Most Cretaceous zircons were found to have a youngest graphical peak age of ca. 106.5 Ma, suggesting the depositional age of the uppermost Jinju Formation. Based on this study and previous works, the average sedimentation rate of the Jinju Formation was calculated to be approximately 0.17-0.31 mm/year in the Milyang Subbasin, and the Cretaceous zircons of the uppermost Jinju Formation seem to have originated mainly from the western or northwestern parts of the Gyeonggi Massif. Unlike the Nakdong and Hasandong formations of the Sindong Group, most zircons analyzed in the uppermost Jinju Formation were Cretaceous. This suggests that volcanic activity occurred in the area closer to the Gyeongsang Basin due to the roll-back of subducting paleo-Pacific Plates during the Jinju period.

Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas (현풍-부곡일원 최하부 유천층군의 산상과 SHRIMP U-Pb 연대)

  • Ghim, Yong Sik;Ko, Kyoungtae;Lee, Byung Choon
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.397-411
    • /
    • 2020
  • The Cretaceous Yucheon Group is volcano-sedimentary successions that are formed by volcanic activities of the Gyeongsang Volcanic Arc. Lack of the detailed field researches on the Yucheon Group results in poor understanding of the formation time and the tempo-spatial development of the volcanic arc. Also, this causes difficulties to reconstruct the depositional history from the Sindong and Hayang groups to the Yucheon Group. In this study, we conducted field research targeting to the interface between topmost part of the Hayang Group and the lowermost part of the Yucheon Group from Hyeonpoong to Bugok areas. We also identified depositional timing of the lowermost part of the Yucheon Group using SHRIMP U-Pb zircon age dating. This Yucheon Group is composed of tuff and lapilli tuff, conformably overlying the Jindong Formation. The results of SHRIMP U-Pb zircon age are 97 to 96 Ma, indicating cessation of deposition of the Hayang Group at 97 to 96 Ma by input of pyroclastic materials into the Jinju Subbasin during the explosive volcanic eruptions from the Gyeongsang Volcanic Arc. In comparison with field researches and results of LA-ICP-MS zircon U-Pb age dating (88-85 Ma) of the lowermost part of the Yucheon Group in Gyeongju areas, the volcanic activities that formed Yucheon Group and their influence ranges varied tempo-spatially. This is probably due to distance difference from the volcanic arc or establishment of the paleo-drainage system from the Gyeongsang Volcanic Arc to nearby lowlands.

Revised Geology and Geological Structures of the Northeastern Chungnam Basin in the Southwestern Korean Peninsula

  • Yujung Kwak;Seung-Ik Park;Jeong-Yeong Park;Taejin Choi;Eun Hye Jeong
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.597-616
    • /
    • 2022
  • The Chungnam basin is a crucial area for studying the Mesozoic crustal evolutionary history of the Korean Peninsula. This study reports the revised geology and new isotopic ages from the northeastern Chungnam Basin based on detailed geological mapping and LA-ICP-MS zircon U-Pb analysis. Our renewed geologic map defines intra-basin, basin-bounding, and basement fault systems closely related to hydrothermal gold-bearing quartz vein injections. Here, we propose the directions of (micro)structural and geochronological future work to address issues on the relationship between the tectonic process, basin evolution, and hydrothermal fluid migration in the southwestern Korean Peninsula.

SHRIMP U-Pb Dating and Volcanic History of the Jipum Volcanics, Western Yeongdeok, Korea (영덕 서부 지품화산암층의 SHRIMP U-Pb 연대측정과 화산과정)

  • Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.341-352
    • /
    • 2017
  • The Jipum Volcanics, occurred in western Yeongdeok, are a stratigraphic unit that is composed of rhyolitic pyroclastic rocks, tuffites, andesitic hyaloclastites, rhyolite lavas, tuffaceous conglomerates and andesite lavas. The SHRIMP U-Pb zircon dating yielded eruption ages of $68.5{\pm}1.6Ma$ from the rhyolitic pyroclastic rocks. Around the time, the unit was generated by dominant rhyolitic volcanisms and locally added by concomitant andesitc volcanisms from another vents. The rhyolitic volcanisms first produced the pyroclastic rocks by phreatomagmatic explosions from rhyolitic magma, later made of the rhyolite lava dome by lava effusions from reopening of the rhyolitc magma at the existing vent. At the time between first and second rhyolitic volcanisms, the tuffites were deposited at a shallow depression in the distal volcanic edifice, and andesitic volcanisms first made of the hyaloclastites by quench fragmentation when hot andesite lavas flew into the depression to contact with cold water. and the Jipum volcano was finally covered with the thin andesitic lavas by lava effusions from another vent.

SHRIMP Zircon U-Pb Age and Geochemistry of Granites in the Gudambong-Sainam Geosites, Danyang Geopark (단양 지질공원 구담봉-사인암 지질명소 화강암의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Aum, Hyun Woo;Kim, Yoonsup;Cheong, Wonseok;Hau, Bui Vinh
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.143-156
    • /
    • 2019
  • We carried out the sensitive high resolution ion microprobe zircon U-Pb age dating and whole rock geochemical analysis of granites in the Gudambong and Sainam geosites, Danyang Geopark. The granites crop out in the western and southern parts of Danyang County, and intruded sedimentary successions of the Yeongweol and Taebaek Groups, respectively. The U-Pb isotopic compositions of zircon from the Gudambong and Sainam granite samples yielded the Cretaceous intrusion ages of $90.4{\pm}0.5Ma(t{\sigma})$ and $90.0{\pm}1.5Ma(t{\sigma})$, respectively. The major and trace elements compositions of the samples showed an affinity of typical A-type granite, indicating their petrogenesis during the late stage of the Bulguksa orogeny or a tectonic dormancy. The geochronologic and geochemical results are identical to those of granites previously reported from the Cretaceous Muamsa and Wolaksan suites.

SHRIMP U-Pb Dating and Chronostratigraphy of the Volcanic Rocks around the Mireukdo Island, Tongyeong, Korea (통영 미륵도 주변 화산암류의 SHRIMP U-Pb 연대측정과 시간층서)

  • Hwang, Sang Koo;Lee, So Jin;Song, Kyo-Young;Yi, Keewook
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.25-36
    • /
    • 2018
  • The volcanic rocks around Mieukdo Island, Tongyeong, are classified as lower andesitic rocks (Jusasan Subgroup) and rhyolitic rocks (Unmunsa Subgroup), and upper andesitic rocks (Yokji Subgroup) and rhyolitic rocks (Saryang Subgroup). We confirmed their eruption timings and stratigraphic relationships, based on SHRIMP U-Pb zircon dating for zircons from major stratigraphic units of the subgroups. By the SHRIMP U-Pb dating, the samples yield the concordia ages of $88.95{\pm}0.44Ma$(n=11) in Punghwari Tuff and $82.56{\pm}0.95Ma$(n=10) in Chudo Tuff of the lower andesitic rocks, and $73.01{\pm}0.75Ma$(n=11) in Dara Andesite of the upper andesitic rocks. And then samples show a concordia age of $71.74{\pm}0.47Ma$(n=14) in Namsan rhyolite dyke of the upper rhyolitic rocks and an apparent age of $70.7{\pm}3.5Ma$ in granodiorite dyke, These data confirm the eruption or injection timings of the units and allow them to distinguish chronostratigraphy of Jusasan, Unmunsa, Yokji and Saryang Subgroups around the Mireukdo Island. In addition, the subgroups give a clue that can make a chronostratigraphical correlation with different volcanic units of the Late Cretaceous Yucheon Group in the Gyeongsang basin.

The Late Cretaceous Emplacement Age of Masan Hornblende-Biotite Granite (마산 각섬석-흑운모 화강암의 연령: 후기 백악기 정치연령)

  • Lee, Tae-Ho;Park, Kye-Hun;Kim, Jeongmin;Kim, Myoung Jung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • We have dated the K-Ar, Ar-Ar and U-Pb ages of the Masan hornblende-biotite granite in the southern Cretaceous Gyeongsang basin to constrain its emplacement age. The ~108 Ma hornblende K-Ar age obtained in the study is similar to the previously reported Rb-Sr age. However, the single grain total fusion $^{40}Ar/^{39}Ar$ dating on hornblende failed to yield statistically meaningful ages because the isotopic system was open during its alteration. Thus the hornblende K-Ar age in the study is also unlikely to be reliable. The single grain total fusion $^{40}Ar/^{39}Ar$ dating on biotite yielded an average age of $75.8{\pm}3.0Ma$. Apart from scattered data in the range of ~45-75 Ma, the average age increased to ~80 Ma. The SHRIMP and LA-MC-ICPMS U-Pb isotopic compositions of zircon from the Masan hornblende-biotite granite yielded its emplacement age as $87.6{\pm}2.7Ma$ and $86.8{\pm}0.4Ma$, respectively. It is thus likely that the ~80 Ma $^{40}Ar/^{39}Ar$ age of biotite might reflect the cooling age of Masan hornblende-biotite granite or the thermal influences from later intense igneous activities in the Gyeongsang basin.

SHRIMP U-Pb Dating and Volcanic Processes of the Volcanic Rocks in the Guamsan Caldera, Cheongsong, Korea (청송 구암산 칼데라 화산암류의 SHRIMP U-Pb 연령측정과 화산과정)

  • Hwang, Sang Koo;Jo, In Hwa;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.50 no.6
    • /
    • pp.467-476
    • /
    • 2017
  • Volcanic rocks related to the Guamsan cadera, which find in the southeastern Cheongsong, are divided into Volcanic breccia, Guamsan Tuff and Post-collapse intrusions. We determined their eruption, intrusion and caldera-forming timings based on SHRIMP U-Pb zircon dating. The dating results yield earlier eruption age of $63.77{\pm}0.94Ma$ from the lower ash-flow tuff and an later eruption age of $60.1{\pm}1.8Ma$ from the upper ash-flow tuff of the Guamsam Tuff, and intrusion age of $60.65{\pm}0.95Ma$ from the rhyolite ring dyke of the Post-collapse intrusions. The age data suggest that the Guamsan caldera is formed in 60.65~60.1 Ma between eruption of the upper ash-flow tuff and intrusion of the rhyolite ring dyke. The Guamsan cadera exhibits the volcanic processes of a perfect igneous cycle passing from ash-flow eruptions through caldera collapse to ring intrusions during 63.77~60.1 Ma.

Alice Springs Orogeny (ASO) Footprints Tracing in Fresh Rocks in Arunta Region, Central Australia, Using Uranium/Lead (U-Pb) Geochronology

  • Kouame Yao;Mohammed O. Idrees;Abdul-Lateef Balogun;Mohamed Barakat A. Gibril
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.817-830
    • /
    • 2023
  • This study investigates the age of the surficial rocks in the Arunta region using Uranium-Lead (U-Pb) geochronological dating. Rock samples were collected at four locations, Cattle-Water Pass (CP 1610), Gough Dam (GD 1622 and GD 1610), and London-Eye (LE 1601), within the Strangways Metamorphic Complex and crushed by selFragging. Subsequently, the zircon grains were imaged using Cathodoluminescence (CL) analysis and the U-Pb (uranium and lead) isotope ratios and the chrono-stratigraphy were measured. The imaged zircon revealed an anomalous heterogeneous crystal structure. Ellipses of the samples at locations GD1601, CP1610, and GD1622 fall below the intercept indicating the ages produced discordant patterns, whereas LE1601 intersects the Concordia curve at two points, implying the occurrence of an event of significant impact. For the rock sample at CP1610, the estimated mean age is 1742.2 ± 9.2 Ma with mean squared weighted deviation (MSWD) = 0.49 and probability of equivalence of 0.90; 1748 ± 15 Ma - MSWD = 1.02 and probability of equivalence of 0.40 for GD1622; and 1784.4 ± 9.1 Ma with MSWD of 1.09 and probability of equivalence of 0.37 for LE1601. But for samples at GD1601, two different age groups with different means occurred: 1) below the global mean (1792.2 ± 32 Ma) estimated at 1738.2 ± 14 Ma with MSWD of 0.109 and probability of equivalence of 0.95 and 2) above it with mean of 1838.22 ± 14 Ma, MSWD of 1.6 and probability of equivalence of 0.95. Analysis of the zircon grains has shown a discrepancy in the age range between 1700 Ma and 1800 Ma compared to the ASO dated to have occurred between 440 and 300 Ma. Moreover, apparent similarity in age of the core and rim means that the mineral crystallized relatively quickly without significant interruptions and effect on the isotopic system. This may have constraint the timing and extent of geological events that might have affected the mineral, such as metamorphism or hydrothermal alteration.

Bird Tracks from the Cretaceous Sanbukdong Formation, Gunsan City, Jeollabuk-do, Korea (전라북도 군산시 산북동층에서 발견된 백악기 새 발자국 화석)

  • Dong-Gwon Jeong;Cheong-Bin Kim;Kyu-Seong Cho;Kyung Soo Kim
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.36-46
    • /
    • 2023
  • In this study, small bird tracks from the Cretaceous Sanbukdong Formation in Gunsan City, South Korea, were briefly described. Detrital zircon SHRIMP U-Pb dating was conducted of the tuffaceous sandstone from the formation to determine the depositional age of the vertebrate track-bearing strata. Small bird tracks are not well-preserved but divided into two types: two consecutive tracks and three isolated tracks. They are small, asymmetric, slender, functionally-tridactyl tracks, which lack a web between digits. The consecutive and isolated tracks were identified as Koreanaornis dodsoni? and Koreanaornis ichnosp., respectively. This study adds avian tracks to the Sanbukdong tetrapod track assemblage composed of theropods, ornithopods, and pterosaur tracks. According to the U-Pb dating, the estimated age of the Sanbukdong Formation is 112.5±5.8 Ma, regard as the Aptian Stage, representing the maximum depositional age for the Sanbukdong Formation. The Sanbukdong Formation can be correlated with the lower part of the Jinju Formation in the Gyeongsang Basin. Thus, small avian tracks may represent the oldest Korean occurrence of Koreanaornis.