• Title/Summary/Keyword: zinc industry

Search Result 153, Processing Time 0.03 seconds

Application and Evaluation of Cleaner Production Technology in Zinc Plating Process (아연도금공정에서의 청정생산기술의 적용 및 평가)

  • Lee, H.K.;Koo, S.B.
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.63-69
    • /
    • 2003
  • The metal finishing industry generates a variety of pollutants such as acidic or alkaline wastewater, chromic compounds, cyanide, heavy metals, and toxic materials. Especially, zinc plating process is one of the processes which cause serious environmental problems. In this study, we applied the proven optimum technology to important unit processes in terms of implement effects through the process diagnosis and analysis. This study aimed to improve the working environment and the environmental pollutions in zinc plating process.

  • PDF

High Speed Zinc Coating by EML-PVD Process (EML-PVD를 이용한 고속 Zn 코팅)

  • Jeong, U-Seong;Nam, Gyeong-Hun;Eom, Mun-Jong;Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.277-277
    • /
    • 2012
  • New concept of coating process, which is called Electro Magnetic Levitation-Physical Vapour deposition (EML-PVD) was developed and investigated. Zinc coating was performed and succeeded for the first time on the steel strip (Cold-rolled Steel) in a continuos pilot line using the EML-PVD process which is specialized in the high deposition rate and high vapor yield. EML-PVD will be expected to be the next generation coating technology to be applied to the steel industry.

  • PDF

Corrosion Protection of Automotive Steels by Novel Water-borne Primer Systems

  • Ooij, William J. van;Puomi, Paula
    • Corrosion Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.239-244
    • /
    • 2007
  • Corrosion protection of automotive steels has traditionally been assured by using a zinc phosphate metal pretreatment followed by the deposition of a cathodic electrocoat system. This system has been developed and optimized over the years into a highly robust and dependable system with a high performance. However, in terms of efficiency and use of resources and energy, the need is now felt to develop a simpler system with fewer steps, shorter lines, less energy requirements (curing and e-coat deposition) and less stringent waste disposal requirement (phosphate sludge). We report here on the development of a one-step system that can possibly replace both the zinc phosphate and the e-coating processes. Such a system is based on the so-called superprimer concept that we have recently developed for the replacement of chromate pretreatment and chromate-containing primers in the aerospace industry. With some modifications, such systems can also be adapted for use in the automotive industry.

자발적 상분리법과 수열합성법을 이용한 ZnO계 일차원 나노구조의 수직 합성법 연구

  • Jo, Hyeong-Gyun;Kim, Dong-Chan;Bae, Yeong-Suk
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.5.2-5.2
    • /
    • 2009
  • From 10 years ago, the development of nano-devices endeavored to achieve reconstruction of information technology (IT) and nano technology (NT) industry. Among the many materials for the IT and NT industry, zinc oxide (ZnO) is a very promising candidate material for the research of nano-device development. Nano-structures of ZnO-based materials were grown easily via various methods and it attracts huge attention because of their superior electrical and optical properties for optoelectronic devices. Recently, among the various growth methods, MOCVD has attracted considerable attention because it is suitable process with benefits such as large area growth, vertical alignment, and accurate doping for nano-device fabrication. However, ZnO based nanowires grown by MOCVD process were had the principal problems of 1st interfacial layers between substrate and nanowire, 2nd a broad diameter (about 100 nm), and 3rd high density, and 4th critical evaporation temperature of Zinc precursors. In particular, the growth of high performance nanowire for high efficiency nano-devices must be formed at high temperature growth, but zinc precursors were evaporated at high temperature.These problems should be repaired for materialization of ultra high performance quantum devices with quantum effect. For this reason, we firstly proposed the growth method of vertical aligned slim MgZnO nanowires (< 10 nm) without interfacial layers using self-phase separation by introduced Mg at critical evaporation temperature of Zinc precursors ($500^{\circ}C$). Here, the self-phase separation was reported that MgO-rich and the ZnO-rich phases were spontaneously formed by additionally introduced Mg precursors. In the growth of nanowires, the nanowires were only grown on the wurzite single crystal seeds as ZnO-rich phases with relatively low Mg composition (~36 at %). In this study, we investigated the microstructural behaviors of self-phase separation with increasing the Mg fluxes in the growth of MZO NWs, in order to secure drastic control engineering of density,diameter, and shape of nanowires.

  • PDF

Concentration of Heavy Metals in Octopus minor in Seosan, Chungnam and Food Safety Assessment (충남 서산에서 어획된 낙지(Octopus minor)의 중금속 함량과 인체 위해성 평가)

  • Lee, Hyo-Jin;Kim, Gi-Beum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.3
    • /
    • pp.270-276
    • /
    • 2010
  • This study estimated the heavy metal concentrations in octopus (Octopus minor) and conducted a food safety assessment of octopus. Octopus, a benthic cephalopod, was collected from the Seosan intertidal zone on the west coast of Korea. The samples were digested with acids, and then the cadmium (Cd), copper (Cu), and zinc (Zn) contents were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The Cd, Cu, and Zn range of concentrations in octopus were 0.06-19 (mean 5.8), 44-1,463 (mean 354.8), and 76-929 (mean 247.9) mg/kg on a dry weight basis, respectively. The concentrations of heavy metals were higher in the internal organs than in the mantle. Of the three heavy metals, copper had the highest concentrations in the internal organs because of the existence of hemocyanin bound with copper in octopus blood, whereas zinc had the highest concentrations in the mantle. No relationship between the concentration of heavy metals and biological parameters (length, weight, and sex) was found. The ratios (I/M) of the heavy metal concentrations in internal organs and mantle were highest for cadmium, although cadmium had much lower concentrations in the internal organs compared with copper and zinc. Considering the provisional tolerable weekly intake (PTWI) of the three heavy metals and the average intake of octopus per day, all three elements should have no adverse effects on humans.

Zinc deficiency decreased cell viability both in endothelial EA.hy926 cells and mouse aortic culture ex vivo and its implication for anti-atherosclerosis

  • Cho, Young-Eun;Choi, Jee-Eun;Alam, Md. Jahangir;Lee, Man-Hyo;Sohn, Ho-Yong;Beattie, John H.;Kwun, In-Sook
    • Nutrition Research and Practice
    • /
    • v.2 no.2
    • /
    • pp.74-79
    • /
    • 2008
  • Zinc plays a protective role in anti-atherosclerosis but the clear mechanism has not been proposed yet. In the present study, we evaluated whether zinc modulates atherosclerotic markers, VACM-1 and ICAM-1 and cell viability both in endothelial cells in vitro and mouse aortic cell viability ex vivo. In study 1, as in vitro model, endothelial EA.hy926 cells were treated with $TNF{\alpha}$ for 5 hours for inducing oxidative stress, and then treated with Zn-adequacy ($15\;{\mu}M$ Zn) or Zn-deficiency ($0\;{\mu}M$ Zn) for 6 hours. Pro-atherosclerosis factors, VCAM-1 and ICAM-1 mRNA expression and cell viability was measured. In study 2, as ex vivo model, mouse aorta ring was used. Mourse aorta was removed and cut in ring then, cultured in a 96-well plate. Aortic ring was treated with various $TNF{\alpha}$ (0-30 mg/ml) and intracellular zinc chelator, N, N, N', N', -tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, $0-30\;{\mu}M$) for cellular zinc depletion for 2 days and then cell viability was measured. The results showed that in in vitro study, Zn-adequate group induced more VCAM-1 & ICAM-1 mRNA expression than Zn-deficient group during 6-hour zinc treatment post-5 hour TNF-$\alpha$ treatment, unexpectedly. These results might be cautiously interpreted that zinc would biologically induce the early expression of anti-oxidative stress through the increased adhesion molecule expression for reducing atherosclerotic action, particularly under the present 6-hour zinc treatment. In ex vivo, mouse aortic ring cell viability was decreased as TNF-$\alpha$ and TPEN levels increased, which suggests that mouse aortic blood vessel cell viability was decreased, when oxidative stress increases and cellular zinc level decreases. Taken together, it can be suggested that zinc may have a protective role in anti-atherosclerosis by cell viability in endothelial cells and aorta tissue. Further study is needed to clarify how pro-atherosclerosis molecule expression is modulated by zinc.

Preparation and Characterization of Sisal Fiber-based Activated Carbon by Chemical Activation with Zinc Chloride

  • Lu, Xincheng;Jiang, Jianchun;Sun, Kang;Xie, Xinping
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.103-110
    • /
    • 2014
  • Sisal fiber, an agricultural resource abundantly available in china, has been used as raw material to prepare activated carbon with high surface area and huge pore volume by chemical activation with zinc chloride. The orthogonal test was designed to investigate the influence of zinc chloride concentration, impregnation ratio, activation temperature and activation time on preparation of activated carbon. Scanning electron micrograph, Thermo-gravimetric, $N_2$-adsorption isotherm, mathematical models such as t-plot, H-K equation, D-R equation and BJH methods were used to characterize the properties of the prepared carbons and the activation mechanism was discussed. The results showed that $ZnCl_2$ changed the pyrolysis process of sisal fiber. Characteristics of activated carbon are: BET surface area was $1628m^2/g$, total pore volume was $1.316m^3/g$ and ratio of mesopore volume to total pore volume up to 94.3%. These results suggest that sisal fiber is an attractive source to prepare mesoporous high-capacity activated carbon by chemical activation with zinc chloride.

Development of Zn-Al thermal diffusion coating technology for improving anti-corrosion of various metal products (다양한 금속 부품의 내식성 향상을 위한 Zn-Al 열 확산 코팅 기술 개발)

  • Lee, Joo-Young;Lee, Joo-Hyung;Hwang, Joon;Lee, Yong-Kyu
    • Corrosion Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.195-203
    • /
    • 2014
  • Modern industry has a wide variety of application areas such as ocean industry, construction and automobile industry. With the current circumstances, the need for anti-corrosion technology that can be used on materials to withstand in harsh environments, is increasing. In this study, we have sought to develop a metal coating technology with zinc and aluminum powders as a potential anti-corrosion material. To make a coating on metal products, a thermal diffusion coating method was used under the conditions of $350^{\circ}C$ for 30 minutes. Optical microscope, Field emission scanning electron microscope (FE-SEM&EDX) and X-ray diffraction analysis were used to analyze a coating layer. As a result, we have confirmed that the generated amount of rust on metal parts coated with thermal diffusion coating method decreased dramatically compared with non-coated metal parts. Furthermore, the anti-corrosion performance was evaluated according to the different ratio of zinc and aluminum. Finally, we confirmed the possibility of application and commercialization of our coating technique on metal parts used in harsh industrial based on the results of these performance.

Effect of Feed Antibiotics on the Performance and Intestinal Microflora of Weanling Pigs in China

  • Li, Defa;Zang, Sumin;Li, Tongzhou;Qiao, Qingyan;Thacker, P.A.;Kim, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.11
    • /
    • pp.1554-1560
    • /
    • 2000
  • Ninety-six crossbred (Large White${\times}$Landrace${\times}$Duroc) pigs, weaned at 35 days of age, were assigned to four dietary treatments in order to investigate the effects of oral antibiotics on the performance and the intestinal microflora of weanling pigs. Pigs were fed either a basal diet, without antibiotics, or the basal diet plus either 50 ppm acetylspiramycin, 50 ppm olaquindox, or 100 ppm bacitracin zinc. The pigs were housed eight per pen with three pens per treatment in an environmentally controlled nursery. Ten days after weaning, three pigs from each treatment were slaughtered and intestinal pH, microflora, and volatile fatty acid concentration were determined. At the end of the 4 week trial, the remaining pigs were weighed and feed consumption was measured. Average daily gains for pigs fed acetylspiramycin, olaquindox, bacitracin zinc and the control diet were 0.43, 0.40, 0.37, and 0.34 kg per day (p=0.001), respectively. Antibiotic addition did not modify feed intake, but acetylspiramycin improved feed conversion (p=0.003). In comparison with the control, acetylspiramycin significantly increased Bifidobacteria numbers in the jejunum (p=0.082) and ileum (p=0.014) and decreased total bacterial counts throughout the intestine (p<0.01 except for the ileum where p=0.079). Acetate production was significantly lower in the cecum (p=0.028) and colon (p=0.079) of pigs fed acetylspiramycin. In addition to increasing numbers of Bifidobacteria in the jejunum (p=0.082) and ileum (p=0.014), olaquindox increased Lactobacillus in the jejunum (p=0.004) and decreased E. coli in the colon (p=0.022). Bacitracin zinc increased Lactobacillus numbers in the jejunum (p=0.004) and Bifidobacterium concentrations in the jejunum (p=0.082) and ileum (p=0.014).