• Title/Summary/Keyword: zig-Zag Theory

Search Result 35, Processing Time 0.02 seconds

HIGHER ORDER ZIG-ZAG PLATE THEORY FOR COUPLED THERMO-ELECTRIC-MECHANICAL SMART STRUCTURES (열-기계-전기 하중이 완전 연계된 지능 복합재 평판의 지그재그 고차이론)

  • 오진호;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.114-117
    • /
    • 2001
  • A higher order zig-zag plate theory is developed to refine accurately predict fully coupled of the mechanical, thermal, and electric behaviors. Both the displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux The numerical examples of coupled and uncoupled analysis are demonstrated the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings.

  • PDF

Damping Analysis of Composite Plates with Zig-Zag Triangular Element (지그재그 삼각형 유한요소를 이용한 복합재료판의 Damping해석)

  • 이덕규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.5-8
    • /
    • 2001
  • A three node flat triangular element incorporating Layerwise Zig-Zag Theory(HZZT) is developed suitable for analyzing damped laminated composite structures. Using an interdependent kinematic relation, the higher order shear rotations are replaced by in-plane displacements, a transverse displacement and section rotations, which result in three translations and two rotations. Natural frequencies and modal loss factors of cantilevered laminated plates with embedded damping layers are calculated with the zig-zag triangular element and compared to the experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.

  • PDF

Damped Vibrations of Axially-Stressed Laminated Beams using Zig-Zag Finite Element (축방향 하중을 받는 점탄성물질이 심어진 적층보의 지그재그요소를 이용한 진동해석)

  • 이덕규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.1-4
    • /
    • 2001
  • Dynamic analysis of laminated beams with a embedded damping layer under tension or compression axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation using the governing equations of motion are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss actors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effect of the axial tension and compression load on the frequencies and loss factors is discussed.

  • PDF

HIGHER ORDER ZIG-ZAG SHELL THEORY FOR SMART COMPOSITE STRUCTURES UNDER THERMO-ELECTRIC-MECHANICAL LOADING (고차 지그재그 이론을 이용한 열_전기_기계 하중하의 스마트 복합재 쉘 구조물의 해석)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.1-4
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine accurately predict deformation and stress of smart shell structures under the mechanical, thermal, and electric loading. The displacement fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. The mechanical, thermal, and electric loading is applied in the sinusoidal distribution function in the in-surface direction. Thermal and electric loading is given in the linear variation through the thickness. Especially, in electric loading case, voltage is only applied in piezo-layer. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. In order to obtain accurate transverse shear and normal stresses, integration of equilibrium equation approach is used. The numerical examples of present theory demonstrate the accuracy and efficiency of the proposed theory. The present theory is suitable for the predictions of behaviors of thick smart composite shell under mechanical, thermal, and electric loadings combined.

  • PDF

Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load (열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론)

  • Oh Jin-Ho;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Dynamic analysis for delaminated composites using DKQ concept based on higher-order zig-zag theory (고차 지그재그 모델을 이용한 다중 층간 분리부가 내재한 복합재 평판의 동적 해석)

  • 오진호;조맹효;김준식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.71-74
    • /
    • 2002
  • A higher-order zig-zag theory is developed to refine the predictions of natural frequency and mode shape of laminated composite plates with multiple delaminations. By imposing top and bottom surface transverse shear stress-free and interface continuity conditions of transverse shear stresses including delaminated interfaces, the displacement field with minimal degree-of-freedoms are obtained. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Through the dynamic version of variational approach, the dynamic equilibriums and variationally consistent boundary conditions are obtained. Through the numerical example of natural frequency analysis, the accuracy and efficiency of present theory are demonstrated. The present theory is suitable as an efficient tool to analyze the static and dynamic behavior of the composite plates with multiple delaminations.

  • PDF

Prediction of vibration response of functionally graded sandwich plates by zig-zag theory

  • Simmi, Gupta;H.D., Chalak
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.6
    • /
    • pp.507-523
    • /
    • 2022
  • This study is aimed to accurately predict the vibration response of two types of functionally graded sandwich plates, one with FGM core and another with FGM face sheets. The gradation in FGM layer is quantified by exponential method. An efficient zig-zag theory is used and the zigzag impacts are established via a linear unit Heaviside step function. The present theory fulfills interlaminar transverse stress continuity at the interface and zero condition at the top and bottom surfaces of the plate for transverse shear stresses. Nine-noded C-0 FE having 8DOF/node is utilized throughout analysis. The present model is free from the obligation of any penalty function or post-processing technique and hence is computationally efficient. Numerical results have been presented on the free vibration behavior of sandwich FGM for different end conditions, lamination schemes and layer orientations. The applicability of present model is confirmed by comparing with published results. Several new results are also specified, which will serve as the benchmark for future studies.

Higher order zig-zag plate theory for coupled thermo-electric-mechanical smart structures (열-기계-전기 하중 하에서의 지능 복합재 평판 고차이론)

  • Oh, Jin-Ho;Cho, Maeng-Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.9-14
    • /
    • 2002
  • A higher order zig-zag plate theory is developed to accurately predict fully coupled mechanical, thermal, and electric behaviors. Both the in-plane displacement and temperature fields through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. Smooth parabolic distribution through the thickness is assumed in the transverse deflection in order to consider transverse normal deformation. Linear zig-zag form is adopted in the electric field. The layer-dependent degrees of freedom of displacement and temperature fields are expressed in tern-is of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses and transverse heat flux. The numerical examples of coupled and uncoupled analysis demonstrate the accuracy and efficiency of the present theory. The present theory is suitable for the predictions of fully coupled behaviors of thick smart composite plate under mechanical, thermal, and electric loadings combined.

Dynamic analysis for delaminated composites based on finite element (다중 층간분리부가 내재된 복합재 평판의 유한요소 진동해석)

  • 오진호;조맹효;김준식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.143-146
    • /
    • 2003
  • A finite element based on the efficient higher order zig-zag theory with multiple delaminations Is developed to refine the predictions of frequency and mode shapes. Displacement field through the thickness are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions including delaminated interfaces as well as free hounding surface conditions of transverse shear stresses. Thus the proposed theory is not only accurate but also efficient. This displacement field can systematically handle the number, shape, size, and locations of delaminations. Throught the dynamic version of variational approach, the dynamic equilibrium equations and variationally consistent boundary conditions are obtained. Through the natural frequency analysis and time response analysis of composite plate with multiple delaminations, the accuracy and efficiency of the present finite element are demonstrated. The present finite element is suitable in the predictions of the dynamic response of the thick composite plate with multiple delaminations.

  • PDF