• Title/Summary/Keyword: ziegler-nichols tuning

Search Result 72, Processing Time 0.047 seconds

PID control with parameter scheduling using fuzzy logic

  • Kwak, Jae-Hyuck;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • This paper describes new PID control methods based on the fuzzy logic. PID gains are retuned after evaluating control performances of transient responses in terms of performance features. The retuning procedure is based on fuzzy rules and reasoning accumulated from the knowledge of experts on PID gain scheduling. For the case that the retuned PID gains result in worse CLDR (characteristics of load disturbance rejection) than the initial gains, an on-line tuning scheme of the set-point weighting parameter is, proposed. This is based on the fact that the set-point weighting method efficiently reduce either overshoot or undershoot without any degradation of CLDR. The set-point weighting parameter is adjusted at each sampling instant by the fuzzy rules and reasoning. As a result, better control performances were achived in comparison with die controllers tuned by the Z-N (Ziegler-Nichols) parameter tuning formula or by the fixed set-point weighting parameter.

  • PDF

An Auto-tuning of SRM using PID Controller (PID제어기를 사용한 SRM의 자동동조)

  • 서기영;이수흠;권순걸;문상필;이내일
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.175-178
    • /
    • 2000
  • We propose a new method to deal with the optimized auto-tuning for the PID controller which is used to the process-centre] in various fields. First of all, in this method, initial values are determined by the Switched Reluctance Motor of system and Ziegler-Nichols method. After deciding binary strings of parents generation using by the fitness values of genetic algorithms, we perform selection, crossover and mutation to generate the descendant generation. The advantage of this method is better than the neural network and multiple regression model method in characteristic of output, and has extent of applying without limit of initial parameters.

  • PDF

A Study on a Neuro-Fuzzy Controller Design (뉴로-퍼지 제어기 설계 연구)

  • Im, Jeong-Heum;Chung, Tae-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2120-2122
    • /
    • 2002
  • There are several types of control systems that use fuzzy logic controller as a essential system component. The majority of research work on fuzzy PID controller focuses on the conventional two-input PI or PD type controller. However, fuzzy PID controller design is a complex task due to the involvement of a large number of parameters in defining the fuzzy rule base. In this paper we combined conventional PI type and PD type fuzzy controller and set the initial parameters of this controller from the conventional PID controller gains obtained by Ziegler-Nichols tuning or other coarse tuning methods. After that, by replacing some of these parameters with sing1e neurons and making them to be adjusted by back-propagation learning algorithm we designed a neuro-fuzzy controller which showed good performance characteristics in both computer simulation and actual application.

  • PDF

A Study on Auto-Tuning of Robust Pill using Evolution Strategy (Evolution Strategy를 이용한 강인한 PID 자동동조에 관한 연구)

  • Bae, Geun-Shin;Kim, Seong-Hoon;Lee, Young-Jin;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1110-1112
    • /
    • 1996
  • In this paper, we propose a new approach for robust auto-tuning of PID gains using Evolution Strategy. Evolution Strategy is searching algorithm which imitate the principles of natural evolution as a method to solve parameter optimization problem and easy to use without any other special mathematical theory. Through the simulation of the speed control of a series-connected de motor, our proposed method shows more improved performance by finding optimal parameters of PID controller than a classical Ziegler-Nichols method.

  • PDF

Improved Self-tuning Fuzzy PID Controller (향상된 자기동조 퍼지 PID 제어기)

  • Roh, Jae-Sang;Lee, Young-Seog;Suh, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.338-341
    • /
    • 1994
  • This paper presents a Fuzzy-PID controller based on Fuzzy logic. Up to now PID controller has had the difficulty of obtaining the optimal gain, and Fuzzy controller has had the difficulty of determining scale factor affecting the performance of control. So that a Fuzzy-PID controller is presented here self tuning of the scale factor and optimal gain. The results of simulation show a good performance in comparison with Ziegler-Nichols controller, having the generality of determining the components of scale factor in Fuzzy rule.

  • PDF

Real-time Fuzzy Tuned PID Control Algorithm (실시간 퍼지 동조 PID 제어 알고리즘)

  • Choi Jeong-Nae;Oh Sung-Kwun;Hwang Hyung-Soo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.423-426
    • /
    • 2005
  • In this paper, we proposed a PID tuning algorithm by the fuzzy set theory to improve the performance of the PID controller. The new tuning algorithm for the PID controller has the initial value of parameter Kp, $\tau_{I}$, $\tau_{D}$. by the Ziegler-Nichols formula that uses the ultimate gain and ultimate period from a relay tuning experiment. We will get the error and the error rate of plant output corresponding to the initial value of parameter and fnd the new proportion gain(Kp) and the integral time ($\tau_{I}$) from fuzzy tuner by the error and error rate of plant oueut as a membership function of fuzzy theory. This fuzzy auto tuning algorithm for PID controller considerably reduced the overshoot and rise time as compared to any other PID controller tuning algorithms. And in real parametric uncertainty systems, it constitutes an appreciable improvement of performance. The significant property of this algorithm is shown by simulation

  • PDF

Neural Network Tuning of the 2-DOF PID Controller With a Combined 2-DOF Parameter For a Gas Turbine Generating Plant

  • Kim, Dong-Hwa
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The purpose of Introducing a combined cycle with gas turbine in power plants is to reduce losses of energy, by effectively using exhaust gases from the gas turbine to produce additional electricity or process. The efficiency of a combined power plant with the gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a combined 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul, Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controllers.

  • PDF

Tuning of a PID Controller Using Soft Computing Methodologies Applied to Basis Weight Control in Paper Machine

  • Nagaraj, Balakrishnan;Vijayakumar, Ponnusamy
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.3
    • /
    • pp.1-10
    • /
    • 2011
  • Proportional.Integral.Derivative control schemes continue to provide the simplest and effective solutions to most of the control engineering applications today. However PID controller is poorly tuned in practice with most of the tuning done manually which is difficult and time consuming. This research comes up with a soft computing approach involving Genetic Algorithm, Evolutionary Programming, and Particle Swarm Optimization and Ant colony optimization. The proposed algorithm is used to tune the PID parameters and its performance has been compared with the conventional methods like Ziegler Nichols and Lambda method. The results obtained reflect that use of heuristic algorithm based controller improves the performance of process in terms of time domain specifications, set point tracking, and regulatory changes and also provides an optimum stability. This research addresses comparison of tuning of the PID controller using soft computing techniques on Machine Direction of basics weight control in pulp and paper industry. Compared to other conventional PID tuning methods, the result shows that better performance can be achieved with the soft computing based tuning method. The ability of the designed controller, in terms of tracking set point, is also compared and simulation results are shown.

Automatic PID Controller Parameter Analyzer

  • Pannil, Pittaya;Julsereewong, Prasit;Ukakimaparn, Prapart;Tirasesth, Kitti
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.288-291
    • /
    • 1999
  • The PID (Proportional-Integral-Derivative) controller is widely used in the industries for more than fifty years with the well known Ziegler-Nichols tuning method and others varieties. However, most of the PID controller being used in the real practice still require trial and error adjustment for each process after the tuning method is done, which is consuming of time and needs the operator experiences to obtain the best results for the controller parameter. In order to reduce the inconvenience in the controller tuning, this paper presents a design of an automatic PID controller parameter analyzer being used as a support instrument in the industrial process control. This analyzer is designed based on the tuning formula of Dahlin to synthesize the PID controller parameter. Using this analyzer, the time to be spent in the trial and error procedures and its complexity can be neglected. Experimental results using PID controller parameter synthesized from this analyzer to the liquid level control plant model and the fluid flow control plant model show that the responses of the controlled systems can be efficiently controlled without any difficulty in mathemathical computation.

  • PDF

2-DOF PID Control for the Steam Temperature Control of Thermal Power Plant

  • Kim, Dong-Hwa;Hong, Won-Pyo;Jung, Chang-Gi;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2123-2125
    • /
    • 2001
  • In thermal power plant, the efficiency of a combined power plant with a gas turbine increases, exceeding 50%, while the efficiency of traditional steam turbine plants is approximately 35% to 40%. Up to the present time, the PID controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain without any experience, since the gain of the PID controller has to be manually tuned by trial and error procedures. This paper focuses on the neural network tuning of the 2-DOF PID controller with a separated 2-DOF parameter (NN-Tuning 2-DOF PID controller), for optimal control of the Gun-san gas turbine generating plant in Seoul. Korea. In order to attain optimal control, transfer function and operating data from start-up, running, and stop procedures of the Gun-san gas turbine have been acquired, and a designed controller has been applied to this system. The results of the NN-Tuning 2-DOF PID are compared with the PID controller and the conventional 2-DOF PID controller tuned by the Ziegler-Nichols method through experimentation. The experimental results of the NN-Tuning 2-DOF PID controller represent a more satisfactory response than those of the previously-mentioned two controller.

  • PDF