• Title/Summary/Keyword: zero-voltage switching

Search Result 854, Processing Time 0.038 seconds

A Contact-less Power Supply for Photovoltaic Power Generation System (태양광 발전 시스템을 위한 무접점 전원장치)

  • Lee, Hyun-Kwan;Kong, Young-Su;Kim, Yoon-Ho;Lee, Gi-Sik;Kang, Sung-In;Chung, Bong-Geun;Kim, Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.216-223
    • /
    • 2006
  • The high efficiency full-bridge LLC resonant converter using a contact-less transformer Is proposed for the photovoltaic power generation system. For the series resonance with a series capacitor, the LLC resonant converter utilizes the leakage inductance and magnetizing inductance of a contact-less transformer Unlike the conventional series resonant converter operated to the continuous resonant current at above resonance frequency, the proposed converter operates to the discontinuous resonant current at the narrow frequency control range below resonance frequency. Due to the discontinuous mode resonant current, the proposed converter can be achieved the zero voltage switching (ZVS) in the primary switches and the zero current switching (ZCS) in the secondary rectification diodes without my auxiliary circuit. In this paper, the experimental results of the proposed full-bridge LLC resonant converter using a contact-less transformer are verified on the simulation based on the theoretical analysis and the 150W experimental prototype.

A Fault Diagnosis Method in Cascaded H-bridge Multilevel Inverter Using Output Current Analysis

  • Lee, June-Hee;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2278-2288
    • /
    • 2017
  • Multilevel converter topologies are widely used in many applications. The cascaded H-bridge multilevel inverter (CHBMI), which is one of many multilevel converter topologies, has been introduced as a useful topology in high and medium power. However, it has a drawback to require a lot of switches. Therefore, the reliability of CHBMI is important factor for analyzing the performance. This paper presents a simple switch fault diagnosis method for single-phase CHBMI. There are two types of switch faults: open-fault and short-fault. In the open-fault, the body diode of faulty switch provides a freewheeling current path. However, when the short-fault occurs, the distortion of output current is different from that of the open-fault because it has an unavailable freewheeling current flow path due to a disconnection of fuse. The fault diagnosis method is based on the zero current time analysis according to zero-voltage switching states. Using the proposed method, it is possible to detect the location of faulty switch accurately. The PSIM simulation and experimental results show the effectiveness of proposed switch fault diagnosis method.

High Power-Factor Single-Stage Half-Bridge High Frequency Resonant Inver (고역률을 가지는 Single-Stage Half-Bridge 고주파 공진 인버터)

  • Won, Jae-Sun;Kim, Dong-Hee;Seo, Cheol-Sik;Cho, Gyu-Pan;Oh, Seung-Hoon;Jung, Do-Young;Bae, Yeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1196-1198
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. So that a high power factor is achieved naturally. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

CM Forward ZVS-MRC with Synchronous Rectifier (동기 정류기를 이용한 클램프 모드 포워드 영전압 스위칭 다중 공진형 컨버터)

  • Ahn, Kang-Soon;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.395-399
    • /
    • 1996
  • The Clamp Mode(CM) Forward Zero Voltage Switching Multi Resonant Converter(ZVS-MRC) with self-driven synchronous rectifier in studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET linear model and is compared with the loss at the conventional schottky diode rectification stage of the converter. From the results of the analysis, it is known that the use of MOSFETs as a synchronous rectifier reduces the loss at the rectification stage over the whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validity of the analysis, we have built a 33W(3.3V/10A) CM Forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. From the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

A High Quality Power Factor Correction Converter Based on Half Bride Topology (Half bridge 회로를 기반으로 한 역률개선용 컨버터)

  • 이준영;문건우;정영석;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.26-36
    • /
    • 1997
  • An single stage AC/DC converter based on half bridge topology suitable for low power level applications is proposed. The proposed converter has high power factor, low harmonic distortion, and tight output regulations. Asymmetrical control and synchronous rectification are adopted to reduce the switching loss and rectification loss, respectively. The modelling employing average modelling method and detailed analysis are performed to derive the design equations. According to these design equations, a prototype converter has been designed and experimented. This prototype meets the IEC 555-2 regulations with near unity power factor and high efficiency.

  • PDF

A Study on SFCL with IGBT Based DC Circuit Breaker in Electric Power Grid

  • Bae, SunHo;Kim, Hongrae;Park, Jung-Wook;Lee, Soo Hyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1805-1811
    • /
    • 2017
  • Recently, DC systems are considered as efficient electric power systems for renewable energy based clean power generators. This discloses several critical issues that are required to be considered before the installation of the DC systems. First of all, voltage/current switching stress, which is aggravated by large fault current, might damage DC circuit breakers. This problem can be simply solved by applying a superconducting fault current limiter (SFCL) as proposed in this study. It allows a simple use of insulated-gate bipolar transistors (IGBTs) as a DC circuit breaker. To evaluate the proposed resistive type SFCL application to the DC circuit breaker, a DC distribution system is composed of the practical line impedances from the real distribution system in Do-gok area, Korea. Also, to reflect the distributed generation (DG) effects, several DC-to-DC converters are applied. The locations and sizes of the DGs are optimally selected according to the results of previous studies on DG optimization. The performance of the resistive type SFCL applied DC circuit breaker is verified by a time-domain simulation based case study using the power systems computer aided design/electromagnetic transients including DC (PSCAD/ EMTDC(R)).

8kW LLC Isolated Converter Design for ESS Battery Charge/Discharge System (ESS 배터리 충방전 시스템을 위한 8kW급 LLC 절연형 컨버터 설계)

  • Kim, Jinwoo;Baek, Seunghoon;Cho, Younghoon;Koo, Tae-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.3
    • /
    • pp.161-167
    • /
    • 2018
  • In battery-operated systems, an isolated converter is used to interface the utility grid with the system to increase stability when charging and discharging batteries. Systems such as vehicle-to-grids (V2Gs), on-board chargers, and energy storage systems (ESSs) have recently become popular, and the roles of isolated converters have become important considerations in fabricating such devices. A fixed-frequency LLC converter, which is a type of isolated converter, presents the advantages of high efficiency and high power density by performing zero-voltage switching (ZVS) over wide frequency ranges. However, the magnetizing inductance of the LLC converter should be designed to enable ZVS in all switching devices. Therefore, in this study, the operating characteristics of the LLC circuit are analyzed, and an optimal design method for ZVS operation is established. Moreover, an 8 kW LLC high-efficiency and high-power-density resonant converter is designed and tested for ESS application. The LLC converter achieves 98% efficiency at rated power.

Digital-To-Phase-Shift PWM Circuit for Full Digital Controlled FB DC/DC Converter

  • Kim, Eun-Soo;Choi, Hae-Young;Park, Soon-Gu;Kim, Tae-Jin;Kim, Yoon-Ho;Lee, Jae-Hak
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.442-446
    • /
    • 1998
  • With the advent of the high-speed microprocessor and DSP, the possibility of executing a control strategy in digital domain has become a reality. By the use of the DSP and microprocessor controller, many high power converters such as especially inverter and motor drive system may be enhanced resulting in the improved robustness to EMI, the ability to communicate the operating conditions and the ease of adjusting the control parameters. But, the digital controller using DSP or microprocessor is not applied in the high frequency switching power supplies, especially full bridge dc/dc converter. So, this paper presents the method and realization of designing a digital-to-phase shift PWM circuit for full digital controlled phase-shifted full bridge dc/dc converter with zero voltage switching. The operating principles, simulation and experimental results will be presented.

  • PDF

Pulse Density Modulated ZVS High Frequency Inverter with Reverse Blocking Single Switch for Dielectric Barrier Discharge Lamp Dimming

  • Sugimura Hisayuki;Yasui Kenji;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.206-209
    • /
    • 2006
  • At present, the cold cathode fluorescent lamp (CCFL) using mercury lamp has been generally used far liquid crystal backlight source of personal computer and car navigation and so on. This kind of lamp is more excellent on luminance performance and cost. However, the requirements of liquid crystal backlight due to a light source without mercury have been strongly increased from a viewpoint of the actual influence on environmental preservation and environmental recycling. As fluorescent lamp without mercury, Dielectric Barrier Discharge based rare gas fluorescent lamp (DBD-FL) using xenon (Xe) gas has been studied so far. This DBD lamp has no influence on the human body and environmental recycle. Its operating life is long because electrode is out. In this paper, the simulation and experimental results of soft switching high frequency inverter with reverse blocking single switch as a high frequency power supply circuit for DBD-FL using Xe gas are comparatively evaluated and discussed from a practical point of view.

  • PDF

Design of Capacitive Power Transfer Using a Class-E Resonant Inverter

  • Yusop, Yusmarnita;Saat, Shakir;Nguang, Sing Kiong;Husin, Huzaimah;Ghani, Zamre
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1678-1688
    • /
    • 2016
  • This paper presents a capacitive power transfer (CPT) system using a Class-E resonant inverter. A Class-E resonant inverter is chosen because of its ability to perform DC-to-AC inversion efficiently while significantly reducing switching losses. The proposed CPT system consists of an efficient Class-E resonant inverter and capacitive coupling formed by two flat rectangular transmitter and receiver plates. To understand CPT behavior, we study the effects of various coupling distances on output power performance. The proposed design is verified through lab experiments with a nominal operating frequency of 1 MHz and 0.25 mm coupling gap. An efficiency of 96.3% is achieved. A simple frequency tracking unit is also proposed to tune the operating frequency in response to changes in the coupling gap. With this resonant frequency tracking unit, the efficiency of the proposed CPT system can be maintained within 96.3%-91% for the coupling gap range of 0.25-2 mm.