• Title/Summary/Keyword: zero torque area

Search Result 7, Processing Time 0.018 seconds

The Braking Torque Analysis of Eddy Current Brake with the Use of Coulomb′s law and the Method of Image (쿨롬 법칙과 영상법을 이용한 와전류 브레이크의 제동토크 해석)

  • Lee, Gap-Jin;Park, Gi-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.9
    • /
    • pp.431-437
    • /
    • 2001
  • Since the eddy current problem usually depends on the geometry of the moving conductive sheet and the shape of the pole projection area, there is no general method to find out its analytical solution. The analysis of the eddy current in a rotating disk is performed in the case of time-invariant field to find its analytical solution. As a method to solve the eddy current problem, the concept of the Coulomb charge and image method are proposed with the consideration of the boundary condition. Firstly, the line charge is obtained from the volume charge generated in the rotating disk and Coulomb's law is applied. Secondly, the finite disk radius is considered by introducing an imaginary eddy current to satisfy the boundary condition that the radial component of the eddy current is zero at the edge of the relating disk. Thirdly, the braking torque is calculated by applying Lorentz force law. Finally, the computed braking torque is compared with the measured one As a result, it can be said that the proposed model presents fairly accurate results in a low angular velocity range although a large error is observed as the angular velocity of the disk increases.

  • PDF

Square Wave Voltage Injection Starting Method of SP-PMSM Considering Nonlinearity of Full-bridge Inverter (풀 브릿지 인버터의 비선형성을 고려한 단상 영구자석 동기 전동기의 구형파 전압 주입 기동 기법)

  • Yoo, Sang-Min;Hwang, Seon-Hwan;Lee, Ki-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.93-98
    • /
    • 2022
  • The purpose of this paper was to propose a method for improving the performance of the open-loop control of single-phase permanent magnet synchronous motor (SP-PMSM), based on a square wave voltage injection. Generally, the SP-PMSM driving systems cmprise a full-bridge inverter and asymmetric air-gap structure of magnetic circuit, because a zero torque occurs on the symmetrical air-gap. As a result, it cannot be started at a specific rotor position. Thus, it is possible to cause the start-up failure at an open-loop control for sensorless operation of SP-PMSM. In this paper, the method with square wave voltage injection considering the nonlinearity of the inverter is presented to resolve the problem. The effectiveness of the proposed algorithm is verified through several experiments.

Electromagnetic Field Analysis of 230 kW-class Low Wind Speed Medium Wind Turbine for Island-area Application (도서지역 적용을 위한 230 kW급 저풍속 중형 풍력발전기의 전자장해석)

  • Choi, Mansoo;Choi, Hyewon;Lee, Changmin;Choi, Hyenjun
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.14-19
    • /
    • 2020
  • Recently, a project to build a carbon zero island with no carbon emissions has been carried out by replacing diesel generators with renewable energy sources in island areas where diesel generators supplied local loads as independent systems. To minimize damage to the lives of islanders, low noise wind generators should be installed by adjusting the rated speed. In islands with low loads, wind turbines that are more efficient than medium-sized wind turbines should be installed. In this study, the generator field analysis and characteristics were analyzed to develop 230 kW-class low wind medium-wind turbine technology. The electromagnetic field analysis program used Maxwell. As a result, the cogging torque was reduced, and the initial maneuver wind speed and loss value were lowered. Hence, the output amount was increased with high efficiency.

A Study on the Appropriate Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기의 적정 파라메터 선정에 관한 연구)

  • 김경철;문병희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.2
    • /
    • pp.45-53
    • /
    • 2002
  • This paper presents an algorithm for the appropriate parameter selection of a power system stabilizer and power converters in two-area power systems with a series HVDC links. The method for PSS is one of the classical techniques by allocating properly poly-zero positions to fit as closely as desired the ideal phase lead and by changing the gain to produce a necessary damping torque. Proper parameter of power converters are obtained in order to have sufficient speed and stability margin to cope with changing reference values and disturbances based on the Root-locus technique. The small signal and transient stability studies using the PSS and power converters parameters obtained from these methods show that a natural oscillation frequency of the study case system is adequately damped. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

A Study on the Optimal Parameter Selection of a Power System Stabilizer for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치의 적정 파라메터 선정에 관한 연구)

  • 김경철;최홍규;최병숙;강태은;고영곤
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.5
    • /
    • pp.81-89
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. The small signal stability and transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the study case system is adequately damped. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF

Shifting Control Method for Automatic Transmission of PSD-Axle Forklift (PSD322-Axle형 지게차 자동변속기의 변속제어)

  • Kwon, Soon-Ki;Choi, Si-Young;Kwon, Gi-Ryung;Han, Seung-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.565-575
    • /
    • 2009
  • A forklift (also called a lift truck) is a powered industrial truck that is used to lift and transport materials. It has become an indispensable piece of equipment in manufacturing and warehousing operations. The modem forklift is equipped with automatic transmission to meet the requirement of loading and easy operation of the vehicle. This paper proposes the design of TECU(Transmission Electronic Control Unit) which is applied to PSD322-Axle transmission. Garofalo's control technique is generally used to the automatic transmission. We consider the work quality and market requirement that does not want to control engine throttle. This paper proposes new controller system which guarantees efficient speed changes with simple system. This new system does not control the engine throttle spontaneously. But it has the load of engine and vehicle as a maximum disturbance. The scope of the disturbance is limited to the stoll area of the torque converter. This paper proposes a ideal control commander that converges relative velocity of the input and ouput of a clutch into a zero. We design linear controller to execute the idea control commander. We applied the control algorithm to the forklift of PSD322-Axle type and the performance of this controller was verified.

  • PDF