• Title/Summary/Keyword: zero properties

Search Result 808, Processing Time 0.028 seconds

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.

Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory

  • Zouatnia, Nafissa;Hadji, Lazreg
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.177-183
    • /
    • 2019
  • In this paper, a new refined hyperbolic shear deformation beam theory for the bending analysis of functionally graded beam is presented. The theory accounts for hyperbolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the functionally graded beam without using shear correction factors. In addition, the effect of different micromechanical models on the bending response of these beams is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG beams whose properties vary continuously across the thickness according to a simple power law. Based on the present theory, the equilibrium equations are derived from the principle of virtual work. Navier type solution method was used to obtain displacement and stresses, and the numerical results are compared with those available in the literature. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG beams.

Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory

  • Safa, Abdelkader;Hadji, Lazreg;Bourada, Mohamed;Zouatnia, Nafissa
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.329-336
    • /
    • 2019
  • An efficient shear deformation beam theory is developed for thermo-elastic vibration of FGM beams. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the on the surfaces of the beam without using shear correction factors. The material properties of the FGM beam are assumed to be temperature dependent, and change gradually in the thickness direction. Three cases of temperature distribution in the form of uniformity, linearity, and nonlinearity are considered through the beam thickness. Based on the present refined beam theory, the equations of motion are derived from Hamilton's principle. The closed-form solutions of functionally graded beams are obtained using Navier solution. Numerical results are presented to investigate the effects of temperature distributions, material parameters, thermal moments and slenderness ratios on the natural frequencies. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

ANNIHILATING PROPERTY OF ZERO-DIVISORS

  • Jung, Da Woon;Lee, Chang Ik;Lee, Yang;Nam, Sang Bok;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.27-39
    • /
    • 2021
  • We discuss the condition that every nonzero right annihilator of an element contains a nonzero ideal, as a generalization of the insertion-of-factors-property. A ring with such condition is called right AP. We prove that a ring R is right AP if and only if Dn(R) is right AP for every n ≥ 2, where Dn(R) is the ring of n by n upper triangular matrices over R whose diagonals are equal. Properties of right AP rings are investigated in relation to nilradicals, prime factor rings and minimal order.

ON STRONGLY RIGHT 𝜋-DUO RINGS

  • Cheon, Jeoung Soo;Nam, Sang Bok;Yun, Sang Jo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.327-337
    • /
    • 2020
  • This article continues the study of right 𝜋-duo rings, concentrating on the situation of nonzero powers. For this purpose we introduce the concept of strongly right 𝜋-duo and examine the structure of strongly right 𝜋-duo in relation to various ring properties that play important roles in ring theory. It is proved for a strongly right 𝜋-duo ring R that if the upper (lower) nilradical of R is zero then R is reduced. Various kinds of examples are examined in relation to the questions raised in the procedure.

ON WEAKLY S-PRIME SUBMODULES

  • Hani A., Khashan;Ece Yetkin, Celikel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1387-1408
    • /
    • 2022
  • Let R be a commutative ring with a non-zero identity, S be a multiplicatively closed subset of R and M be a unital R-module. In this paper, we define a submodule N of M with (N :R M)∩S = ∅ to be weakly S-prime if there exists s ∈ S such that whenever a ∈ R and m ∈ M with 0 ≠ am ∈ N, then either sa ∈ (N :R M) or sm ∈ N. Many properties, examples and characterizations of weakly S-prime submodules are introduced, especially in multiplication modules. Moreover, we investigate the behavior of this structure under module homomorphisms, localizations, quotient modules, cartesian product and idealizations. Finally, we define two kinds of submodules of the amalgamation module along an ideal and investigate conditions under which they are weakly S-prime.

Different estimation methods for the unit inverse exponentiated weibull distribution

  • Amal S Hassan;Reem S Alharbi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.191-213
    • /
    • 2023
  • Unit distributions are frequently used in probability theory and statistics to depict meaningful variables having values between zero and one. Using convenient transformation, the unit inverse exponentiated weibull (UIEW) distribution, which is equally useful for modelling data on the unit interval, is proposed in this study. Quantile function, moments, incomplete moments, uncertainty measures, stochastic ordering, and stress-strength reliability are among the statistical properties provided for this distribution. To estimate the parameters associated to the recommended distribution, well-known estimation techniques including maximum likelihood, maximum product of spacings, least squares, weighted least squares, Cramer von Mises, Anderson-Darling, and Bayesian are utilised. Using simulated data, we compare how well the various estimators perform. According to the simulated outputs, the maximum product of spacing estimates has lower values of accuracy measures than alternative estimates in majority of situations. For two real datasets, the proposed model outperforms the beta, Kumaraswamy, unit Gompartz, unit Lomax and complementary unit weibull distributions based on various comparative indicators.

A stability factor for structure-dependent time integration methods

  • Shuenn-Yih Chang;Chiu-Li Huang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.363-373
    • /
    • 2023
  • Since the first family of structure-dependent methods can simultaneously integrate unconditional stability and explicit formulation in addition to second order accuracy, it is very computationally efficient for solving inertial problems except for adopting auto time-stepping techniques due to no nonlinear iterations. However, an unusual stability property is first found herein since its unconditional stability interval is drastically different for zero and nonzero damping. In fact, instability might occur for solving a damped stiffness hardening system while an accurate result can be obtained for the corresponding undamped stiffness hardening system. A technique of using a stability factor is applied to overcome this difficulty. It can be applied to magnify an unconditional stability interval. After introducing this stability factor, the formulation of this family of structure-dependent methods is changed accordingly and thus its numerical properties must be re-evaluated. In summary, a large stability factor can result in a large unconditional stability interval but also lead to a large relative period error. As a consequence, a stability factor must be appropriately chosen to have a desired unconditional stability interval in addition to an acceptable period distortion.

Tunneling Spectra in Organic Cu-Pc/$Bi_2Sr_2CaCu_2O_{8+\delta}$ Tunnel Junctions

  • Kim, Sunmi;E, Jungyoon;Lee, Kiejin;Ishbas, Takayuki;Lee, Yang-San
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • We report the current transport properties of a normal metal/organic conductor/ superconductor tunnel junction as a novel high- $T_{c}$ superconducting three terminal device. The organic copper (II) phthalocyanine (Cu-Pc) layer was used far a polaronic quasiparticle (QP) injector. The injection of polaronic QP from the Cu-Pc interlayer into a superconductor $Bi_2$$Sr_2$$CaCu_2$ $O_{8+}$ $\delta$/(BSCCO) thin film generated a substantially larger nonequilibrium effect as compared to the normal QP injection current. The tunneling spectroscopy of an Au/cu-PC/BSCCO junction exhibited a zero bias conductance peak which may be due to Andreev reflection at a Cu-Pc/d-wave superconductor junction.n..

  • PDF

A STUDY OF LINEAR MAPPING PRESERVING PYTHAGOREAN ORTHOGONALITY IN INNER PRODUCT SPACES

  • S. SYLVIANI;A. TRISKA;L. RATHOUR;H. FULHAMDI;D.A. KUSUMA;K. PARMIKANTI;F.C. PERMANA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.5
    • /
    • pp.1155-1170
    • /
    • 2024
  • The concept of orthogonality is widely used in various fields of study, both within and outside the scope of mathematics, especially algebra. The concept of orthogonality gives a picture of the relationship between two vectors that are perpendicular to each other, or the inner product in both of them is zero. However, the concept of orthogonality has undergone significant development. One of the developments is Pythagorean orthogonality. In this paper, it is explored topics related to Pythagorean orthogonality and linear mappings in inner product spaces. It is also examined how linear mappings preserve Pythagorean orthogonality and provides insights into how mathematical transformations affect geometric relationships. The results reveal several properties that apply to linear mappings preserving Pythagorean orthogonality.