• Title/Summary/Keyword: zero modulation

Search Result 327, Processing Time 0.025 seconds

Measurement of linear dispersion of optical fibers in zero-dispersion wavelength region (분산천이 광섬유의 영분산 파장영역에서 선형분산 곡선측정)

  • 김동환;김상혁;조재철;최상삼
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.1
    • /
    • pp.20-24
    • /
    • 1998
  • Fiber four-wave mixing(FWM) in zero-dispersion wavelength region is studied. FWM efficiency of -26 dBm and bandwidth of 2nm are measured. The linear dispersion slope in zero-dispersion wavelength region is calculated from the modulation behavior of FWM efficiency.

  • PDF

Joint Hierarchical Modulation and Network Coding for Asymmetric Data Rate Transmission over Multiple-Access Relay Channel (다중 접속 릴레이 채널에서 비대칭 데이터 전송을 위한 계층 변조 및 네트워크 코딩 결합 기법)

  • You, Dongho;Kim, Dong Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.747-749
    • /
    • 2016
  • We consider a time-division multiple-access relay channel (MARC), in which two source nodes (SNs) transmit data with different data rate to a destination node (DN) with the help of a relay node (RN) using network coding (NC). However, due to its asymmetric data rate, the RN cannot combine the received bits by XOR NC. In this paper, we compare with the problem of asymmetric data rates by using zero padding and hierarchical 16QAM.

Dimming Level Control Technique for Lighting / Communication Functions in Visible Light Communication Systems (가시광통신 시스템에서 조명/통신 기능을 위한 효과적인 Dimming level control 기법)

  • Lee, Kyu-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.8 no.5
    • /
    • pp.153-158
    • /
    • 2018
  • In this paper, we have studied a dimming level control method to satisfy both lighting and communication performance in visible light communication system. In the case of the most commonly used OOK and RZ-OOK modulation schemes, continuous Burst Zero Duration will seriously degrade the lighting function. This causes not only the illumination but also the performance of the entire system to deteriorate. Through this study, we analyzed the dimming level characteristics of the existing system and proposed the Illegal Pulse Insertion (IPI) algorithm as a technique to increase the dimming level. Through this, it is possible to effectively control the dimming level and improve the QoS of both lighting and communication by resolving the flicker phenomenon and dimming level reduction in the existing modulation and demodulation system.

Characteristic of Induction Motor Drives Fed by Three Leg and Five Leg Inverters

  • Talib, Md. Hairul Nizam;Ibrahim, Zulkifilie;Rahim, Nasrudin Abd.;Hasim, Ahmad Shukri Abu
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.806-813
    • /
    • 2013
  • This paper aims to compare the performance of three phase induction motor drives using Five Leg Inverter (FLI) and Three Leg Inverter (TLI) configurations. An Indirect Field Oriented Control (IFOC) method using a TLI is well established and incorporated for high performance speed drives in various industries. The FLI dual motor drive system on the other hand shows good workability in the independent control of two induction motor drives simultaneously. In this experiment, the IFOC method is utilized for both drive systems, and Space Vector Pulse Width Modulation (SVPWM) is used to generate pulses for both inverters. For the FLI, the Double Zero Sequence (DZS) Injection technique is used to generate the modulation signal. The complete experiment setup is done by using a DSpace 1103 controller board. The individual motor performances are analyzed using similar schemes, equipment setups and controller parameter values. The results show similar speed performance response capability between the single motor operation using a TLI system and the two motor operation using a FLI system based on the variable speed range either in forward or reverse operation. They also show similar load rejection abilities. However, the single motor with a TLI has a better power quality aspect such as ripple current and total harmonics distortion (THD).

A Simplified Zero-Forcing Receiver for Multi-User Uplink Systems Based on CB-OSFB Modulation

  • Bian, Xin;Tian, Jinfeng;Wang, Hong;Li, Mingqi;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2275-2293
    • /
    • 2020
  • This paper focuses on the simplified receiver design for multi-user circular block oversampled filter bank (CB-OSFB) uplink systems. Through application of discrete Fourier transform (DFT), the special banded structure and circular properties of the modulation matrix in the frequency domain of each user are derived. By exploiting the newly derived properties, a simplified zero-forcing (ZF) receiver is proposed for multi-user CB-OSFB uplink systems in the multipath channels. In the proposed receiver, the matrix inversion operation of the large dimension multi-user equivalent channel matrix is transformed into DFTs and smaller size matrix inversion operations. Simulation is given to show that the proposed ZF receiver can dramatically reduce the computational complexity while with almost the same symbol error rate as that of the traditional ZF receiver.

Zero Voltage Switching Boost H-Bridge AC Power Converter for Induction Heating Cooker

  • Kwon, Soon-Kurl;Saha, Bishwajit
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.19-27
    • /
    • 2007
  • This paper presents a novel soft-switching PWM utility frequency AC to high frequency AC power conversion circuit incorporating boost H-bridge inverter topology, which is more suitable and acceptable for cost effective consumer induction heating applications. The operating principle and the operation modes are presented using the switch mode equivalent circuits and the operating voltage and current waveforms. The performances of this high-frequency inverter using the latest IGBTs are illustrated, which includes high frequency power regulation and actual efficiency characteristics based on zero voltage soft-switching(ZVS) operation ranges, and the power dissipation as compared with those of the conventional type high frequency inverter. In addition, a dual mode control scheme of this high frequency inverter based on asymmetrical pulse width modulation(PWM) and pulse density modulation(PDM) control scheme is discussed in this paper in order to extend the soft switching operation ranges and to improve the power conversion efficiency at the low power settings. The power converter practical effectiveness is substantially proved based on experimental results from practical design example.

Improvement of Received Optical Power Sensitivity in Asymmetric 2.5Gbps/1.2Gbps Passive Optical Network with Inverse Return to Zero(RZ) coded Downstream and NRZ upstream re-modulation (역 RZ 부호로 코딩된 하향신호의 재변조를 이용한 비대칭 2.5Gbps/622Mbps 수동 광가입자 망에서의 수신 감도의 개선)

  • Park, Sang-Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.3
    • /
    • pp.65-72
    • /
    • 2010
  • We propose the asymmetric 2.5Gbps/622Mbps PON(Passive Optical Network) in order to reduce the bandwith of filter at receiver with inverse RZ(Return to Zero) code coded downstream and NRZ(Non Return to Zero) upstream re-modulation. I theoretically analyze BER(Bit Error Rate) performance and the power sensitivity with the optimal threshold level by performing simulation with MATLAB according to the types of downstream data. The results have shown that the optimal threshold level at the optical receiver could be saturated at 0.33 as the optical received power increase more than -26dBm to keep $10^{-12}$ of BER to a minimum. Also the power sensitivity is more improved by about 3dB by fixing the threshold level at 0.33 than the conventional receiver. The proposed system can be a useful technology for optical access networks with asymmetric upstream and downstream data rates because the optical receiver can be used without controlling threshold levels and that does not require a light source in optical network unit (ONU) and its control circuits in the optical line termination (OLT).

Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

  • Nair, Meenu D.;Biswas, Jayanta;Vivek, G.;Barai, Mukti
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1244-1255
    • /
    • 2017
  • The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

A 360Hz DC Ripple-Voltage Suppression Scheme in Three-Phase Soft-Switched Buck Converter (360Hz DC 리플-전압 감소기법을 사용한 3-Phase Soft-Switched Buck Converter)

  • Choi, Ju-Yeop;Ko, Jong-Jin;Song, Joong-Ho;Choy, Ick;Jeong, Seung-Gi
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.12
    • /
    • pp.813-820
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output in three phase buck diode converter is presented in this paper. The proposed pulse frequency modulation methods and duty ratio modulation methods are employed to regulate the output voltage of the buck diode converter and guarantee zero-current-switching(ZCS) of the switch over the wide load range. The proposed control methods used in this paper provide generally good performance such as low THD of the input line current and unity power factor. In addition, control methods can be effectively used to suppress the low frequency ripple voltage appeared in the dc output voltage. The harmonic injection technique illustrates its validity and effectiveness through the simulations and experiments.

  • PDF

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.