• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.033 seconds

Novel Sliding Mode Controll with BLDC motor (BLDC 모터의 새로운 슬라이딩 모드 제어)

  • Ok, In-Jo;Lee, Jong-Ju;Ahn, Ho-Kyun;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2289-2291
    • /
    • 2001
  • In this paper, a novel sliding surface is proposed by defining a novel virtual state. This sliding surface has nominal dynamics of an original system and makes it possible that the Sliding Mode Control(SMC) technique is used with the various types of controllers. Its design is based on the augmented system whose dynamics have a higher order than that of the original system. The reaching phase is removed by using an initial virtual state which makes the initial sliding function equal to zero.

  • PDF

Influence of torsional rigidity of flexible appendages on the dynamics of spacecrafts

  • Chiba, Masakatsu;Magata, Hidetake
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.19-38
    • /
    • 2019
  • The influence of torsional rigidity of hinged flexible appendage on the linear dynamics of flexible spacecrafts with liquid on board was analyzed by considering the spacecraft's main body as a rigid tank, its flexible appendages as two elastically supported elastic beams, and the onboard liquid as an ideal liquid. The meniscus of the liquid free surface due to surface tension was considered. Using the Lagrangian of the spacecraft's main body (rigid tank), onboard liquid, and two beams (flexible appendages) in addition to assuming the system moved symmetrically, the coupled system frequency equations were obtained by applying the Rayleigh-Ritz method. The influence of the torsional rigidity of the flexible appendages on the spacecraft's coupled vibration characteristics was primary focus of investigation. It was found that coupled vibration modes especially that of appendage considerably changed with torsion spring parameter ${\kappa}_t$ of the flexible appendage. In addition, variation of the main body displacement with system parameters was investigated.

QUANTUM MARKOVIAN SEMIGROUPS ON QUANTUM SPIN SYSTEMS: GLAUBER DYNAMICS

  • Choi, Veni;Ko, Chul-Ki;Park, Yong-Moon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.1075-1087
    • /
    • 2008
  • We study a class of KMS-symmetric quantum Markovian semigroups on a quantum spin system ($\mathcal{A},{\tau},{\omega}$), where $\mathcal{A}$ is a quasi-local algebra, $\tau$ is a strongly continuous one parameter group of *-automorphisms of $\mathcal{A}$ and $\omega$ is a Gibbs state on $\mathcal{A}$. The semigroups can be considered as the extension of semi groups on the nontrivial abelian subalgebra. Let $\mathcal{H}$ be a Hilbert space corresponding to the GNS representation con structed from $\omega$. Using the general construction method of Dirichlet form developed in [8], we construct the symmetric Markovian semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}$. The semigroup $\{T_t\}{_t_\geq_0}$ acts separately on two subspaces $\mathcal{H}_d$ and $\mathcal{H}_{od}$ of $\mathcal{H}$, where $\mathcal{H}_d$ is the diagonal subspace and $\mathcal{H}_{od}$ is the off-diagonal subspace, $\mathcal{H}=\mathcal{H}_d\;{\bigoplus}\;\mathcal{H}_{od}$. The restriction of the semigroup $\{T_t\}{_t_\geq_0}$ on $\mathcal{H}_d$ is Glauber dynamics, and for any ${\eta}{\in}\mathcal{H}_{od}$, $T_t{\eta}$, decays to zero exponentially fast as t approaches to the infinity.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

Evidence for galaxy dynamics tracing background cosmology below the de Sitter scale of acceleration

  • van Putten, Maurice H.P.M
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.55.5-56
    • /
    • 2017
  • Galaxy dynamics probes weak gravity at accelerations below the de Sitter scale of acceleration adS = cH, where c is the velocity of light and H is the Hubble parameter. Low and high redshift galaxies hereby offer a novel probe of weak gravity in an evolving cosmology, satisfying H(z) = H0(1 + A(6z + 12z^2 +12z^3+ 6z^4+ (6/5)z^5)/(1 + z) with baryonic matter content A sans tension to H0 in surveys of the Local Universe. Galaxy rotation curves show anomalous galaxy dynamics in weak gravity aN < adS across a transition radius r beyond about 5 kpc for galaxy mass of 1e11 solar mass. where aN is the Newtonian acceleration based on baryonic matter content. We identify this behavior with a holographic origin of inertia from entanglement entropy, that introduces a C0 onset across aN=adS with asymptotic behavior described by a Milgrom parameter satisfying a0=omega/(2pi), where omega=sqrt(1-q)H is a fundamental eigenfrequency of the cosmological horizon. Extending an earlier confrontation with data covering 0.003 < aN/adS < 1 at redshift z about zero in Lellie et al. (2016), the modest anomalous behavior in the Genzel et al. sample at redshifts 0.854 < z <2.282 is found to be mostly due to clustering 0.36 < aN/adS < 1 close to the C0 onset to weak gravity and an increase of up to 65% in a0.

  • PDF

The robustness of continuous self tuning controller for retarded system

  • Lee, Bongkuk;Huh, Uk Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1930-1933
    • /
    • 1991
  • In this paper, the robustness of self turning controller on the continuous time-delay system is investigated. The polynomial identification method using continuous time exponentially weighted least square algorithm is used for estimating the time.-delay system parameters. The pole-zero and pole placement method are adopted for the control algorithm. On considering the control weighting factor and reliability filter the effect of unmodeled dynamics of the plant are examined by the simulation.

  • PDF

THE MEASURE OF THE UNIFORMLY HYPERBOLIC INVARIANT SET OF EXACT SEPARATRIX MAP

  • Kim, Gwang-Il;Chi, Dong-Pyo
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.779-788
    • /
    • 1997
  • In this work, using the exact separatrix map which provides an efficient way to describe dynamics near the separatrix, we study the stochastic layer near the separatrix of a one-degree-of-freedom Hamilitonian system with time periodic perturbation. Applying the twist map theory to the exact separatrix map, T. Ahn, G. I. Kim and S. Kim proved the existence of the uniformly hyperbolic invariant set(UHIS) near separatrix. Using the theorems of Bowen and Franks, we prove this UHIS has measure zero.

  • PDF

QUALITATIVE ANALYSIS OF A GENERAL PERIODIC SYSTEM

  • Xu, Shihe
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.1039-1048
    • /
    • 2018
  • In this paper we study the dynamics of a general ${\omega}-periodic$ model. Necessary and sufficient conditions for the global stability of zero steady state of the model are given. The conditions under which there exists a unique periodic solutions to the model are determined. We also show that the unique periodic solution is the global attractor of all other positive solutions. Some applications to mathematical models for cancer and tumor growth are given.

Robustness of Continuous-time Self-Tuning Control (연속시간 자기동조 제어기의 강인성)

  • Kim, Jong-Moon;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.360-364
    • /
    • 1989
  • In this paper, the robustness of self tuning controller for continuous time system is investigated. The continuous time least square algorithm is used in estimating parameters. The main control algorithm is the pole-zero placement control. The effects of unmodeled dynamics on continuous time approach and discrete-time approach are compared.

  • PDF

The Robustness of Continuous Implicit Self Tuning Controller (연속치 내재형 자기동조 제어기의 강인성)

  • Lee, Bong-Kuk;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.496-499
    • /
    • 1990
  • In this paper, the robustness of implict self tunning controller on the continuous time system is investigated. Continuous time exponentially weighted least square algorithm is used for estimating the system parameters. The pole-zero placement method is adapted for the control algorithm. On considering the control weighting factor and realizability filter the effects of unmodeled dynamics of the plant are examined by the simulation.

  • PDF