• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.028 seconds

THE SEMIGROUPS OF BINARY SYSTEMS AND SOME PERSPECTIVES

  • Kim, Hee-Sik;Neggers, Joseph
    • Bulletin of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.651-661
    • /
    • 2008
  • Given binary operations "*" and "$\circ$" on a set X, define a product binary operation "$\Box$" as follows: $x{\Box}y\;:=\;(x\;{\ast}\;y)\;{\circ}\;(y\;{\ast}\;x)$. This in turn yields a binary operation on Bin(X), the set of groupoids defined on X turning it into a semigroup (Bin(X), $\Box$)with identity (x * y = x) the left zero semigroup and an analog of negative one in the right zero semigroup (x * y = y). The composition $\Box$ is a generalization of the composition of functions, modelled here as leftoids (x * y = f(x)), permitting one to study the dynamics of binary systems as well as a variety of other perspectives also of interest.

A Robust Adaptive Direct Controller for Non-Linear First Order Systems

  • Nguyen, Thi-Hong-Thanh;Cu, Xuan-Thinh;Nguyen, Thi-Minh-Huong;Ha, Thi-Hoan;Nguyen, Dac-Hai;Tran, Van-Truong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.990-993
    • /
    • 2005
  • This paper presents new results on designing a robust adaptive direct controller for a class of non-linear first order systems. The designing method based on the use of dead zone in the parameters' update law. It is shown that the size of the dead zone does not depend on the upper bounds of the disturbances. That means that even if the bounds are large, the tracking error will always converge to a set of the dead zone size. However, in the ideal case, when the exogenous signal functions and the function represents un-modeled dynamics of the systems equal to zero, the proposed controller does nt mean the convergence to zero of the tracking error. Computer simulation results show the effectiveness of the controller in dealing with the stated problems.

  • PDF

AN UNFOLDING OF DEGENERATE EQUILIBRIA WITH LINEAR PART $\chi$'v= y, y' = 0

  • Han, Gil-Jun
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.61-69
    • /
    • 1997
  • In this paper, we study the dynamics of a two-parameter unfolding system $\chi$' = y, y' = $\beta$y+$\alpha$f($\chi\alpha\pm\chiy$+yg($\chi$), where f($\chi$,$\alpha$) is a second order polynomial in $\chi$ and g($\chi$) is strictly nonlinear in $\chi$. We show that the higher order term yg($\chi$) in the system does not change qulitative structure of the Hopf bifurcations near the fixed points for small $\alpha$ and $\beta$ if the nontrivial fixed point approaches to the origin as $\alpha$ approaches zero.

  • PDF

Spin-Motive Force Caused by Vortex Gyration in a Circular Nanodisk with Holes

  • Moon, Jung-Hwan;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.6-9
    • /
    • 2011
  • Spin-motive force has drawn attention because it contains a fundamental physical property. Spin-motive force creates effective electric and magnetic fields in moving magnetization; a vortex is a plausible system for observing the spin-motive force because of the abrupt profile of magnetization. However, the time-averaged value of a spin-motive force becomes zero when a vortex core undergoes gyroscopic motion. By means of micromagnetic simulation, we demonstrates that a non-zero time-averaged electric field induced by spin-motive force under certain conditions. We propose an experimental method of detecting spin-motive force that provides a better understanding of spin transport in ferromagnetic system.

Necessary and Sufficient Condition for the Solutions of First-Order Neutral Differential Equations to be Oscillatory or Tend to Zero

  • Santra, Shyam Sundar
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.73-82
    • /
    • 2019
  • In this work, we give necessary and sufficient conditions under which every solution of a class of first-order neutral differential equations of the form $$(x(t)+p(t)x({\tau}(t)))^{\prime}+q(t)Hx({\sigma}(t)))=0$$ either oscillates or converges to zero as $t{\rightarrow}{\infty}$ for various ranges of the neutral coefficient p. Our main tools are the Knaster-Tarski fixed point theorem and the Banach's contraction mapping principle.

Reducing Common-Mode Voltage of Three-Phase VSIs using the Predictive Current Control Method based on Reference Voltage

  • Mun, Sung-ki;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.712-720
    • /
    • 2015
  • A model predictive current control (MPCC) method that does not employ a cost function is proposed. The MPCC method can decrease common-mode voltages in loads fed by three-phase voltage-source inverters. Only non-zero-voltage vectors are considered as finite control elements to regulate load currents and decrease common-mode voltages. Furthermore, the three-phase future reference voltage vector is calculated on the basis of an inverse dynamics model, and the location of the one-step future voltage vector is determined at every sampling period. Given this location, a non-zero optimal future voltage vector is directly determined without repeatedly calculating the cost values obtained by each voltage vector through a cost function. Without utilizing the zero-voltage vectors, the proposed MPCC method can restrict the common-mode voltage within ± Vdc/6, whereas the common-mode voltages of the conventional MPCC method vary within ± Vdc/2. The performance of the proposed method with the reduced common-mode voltage and no cost function is evaluated in terms of the total harmonic distortions and current errors of the load currents. Simulation and experimental results are presented to verify the effectiveness of the proposed method operated without a cost function, which can reduce the common-mode voltage.

Understanding Switching Arcs and Dielectric Capability of a SF6 Self-Blast Interrupter

  • Lee, Won-Ho;Kim, Cheol-Su;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.2-196.2
    • /
    • 2016
  • The design and development procedures of SF6 gas circuit breakers are still largely based on trial and error through testing although the development costs go higher every year. The computation cannot cover the testing satisfactorily because all the real processes arc not taken into account. But the knowledge of the arc behavior and the prediction of thermal plasmas inside SF6 interrupters by numerical simulations are more useful than those by experiments due to the difficulties to obtain physical quantities experimentally and the reduction of computational costs in recent years. In this paper, in order to get further information into the interruption process of a SF6 self-blast interrupter, which is based on the combination of thermal expansion and arc rotation, gas flow simulations with a CFD-arc modeling are performed during the whole switching process such as high-current period, pre-current zero period, and current-zero period. Through the complete work, the temperature of residual arcs as well as the breakdown index after current zero should be a good criterion to predict the dielectric capability of interrupters.

  • PDF

Control For Minimizing Settling Time in High-Density Disk Drives (고밀도 디스크 드라이브의 안착시간 최소화 제어)

  • 강창익;김창환;임충혁
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.10-21
    • /
    • 2003
  • During seek operation in disk drives, the recording head is moved toward desired track by seek servo controller and then is settled onto the center of the desired track by settling servo controller. If the head speed at the start of settling servo control is not slow, it may produce overshoot relative to the center of track and thus extend the settling time. The degradation in settling performance will be more severe as the track width becomes smaller for higher density of data storage. We design a new settling servo controller for minimizing settling time based on the pole-zero cancellation. In order to cancel slow poles in settling response, we apply discrete pulse signals to the system in addition to the state feedback control. For exact pole-zero cancellation, we consider the dynamics of power amplifier used for actuator current regulation and the effects of delay in control action. In addition, we present system parameter identification algerian for the robustness of our controller to system parameter variation. In order to demonstrate the practical use of our controller, we present experimental results obtained by using a commercially available disk drive.

Practical Design Methodology of Dual Active Bridge Converter as Isolated Bi-directional DC-DC Converter for Solid State Transformer (Solid State Transformer를 위한 양방향 Dual Active Bridge DC-DC 컨버터의 설계 기법)

  • Choi, Hyun-Jun;Lee, Won-Bin;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.102-108
    • /
    • 2017
  • Proper design guides are proposed for a practical dual-active bridge (DAB) converter based on the mathematical model on the steady state. The DAB converter is popular in bidirectional application due to its zero-voltage capability and easy bidirectional operation for seamless control, high efficiency, and performance. Some design considerations are taken to overcome the limitation of the DAB converter. The practical design methodology of power stage is discussed to minimize the conduction and switching losses of the DAB converter. Small-signal model and frequency response are derived and analyzed based on the generalized average method, which considers equivalent series resistance, to improve the dynamics, stability, and reliability with voltage regulation of the practical DAB converter. The design of closed-loop control is discussed by the derived small-signal model to obtain the pertinent gain and phase margin in steady-state operation. Experimental results of a 3.3 kW prototype of DAB converter demonstrate the validity and effectiveness of the proposed methods.

A Disctete Model Reference Control With a Neural Network System Ldentification for an Active Four Wheel Steering System

  • 김호용;최창환
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.29-39
    • /
    • 1997
  • A discrete model reference control scheme for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of discrete time nonlinar dynamics. The schmen employs a neural network to identify the plan systems, wher the neural network estimates the nonlinear dynamics of the plant. The algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed. Whith thd resulting identification model which contains the neural networks, the parameters of controller are adjusted. The proposed scheme is applied to the vehicle active four wheel system and shows the validity and effectiveness through simulation. The three-degree-of freedom vehicle handling model is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the yaw rate overshoot reduction of a typical mid-size car is improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response andl smaller side slip angle than the 2WS case.

  • PDF