• Title/Summary/Keyword: zero dynamics

Search Result 218, Processing Time 0.033 seconds

A Study on the Stability of Dynamic Walking of a Humanoid Robot (휴머노이드 로봇의 동보행 안정도에 관한 연구)

  • Lee, Ji-Young;Cho, Jung-San;Lee, Sang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion

  • Lee, Weon-Gyu;Rhee, Young Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.858-864
    • /
    • 2014
  • Recently, many researches have shown that even photosynthetic light-harvesting pigment-protein complexes can have quantum coherence in their excitonic energy transfer at cryogenic and physiological temperatures. Because the protein supplies such noisy environment around pigments that conventional wisdom expects very short lived quantum coherence, elucidating the mechanism and searching for an applicability of the coherence have become an interesting topic in both experiment and theory. We have previously studied the quantum coherence of a phycocyanin 645 complex in a marine algae harvesting light system, using Poisson mapping bracket equation (PBME). PBME is one of the applicable methods for solving quantum-classical Liouville equation, for following the dynamics of such pigment-protein complexes. However, it may suffer from many defects mostly from mapping quantum degrees of freedom into classical ones. To make improvements against such defects, benchmarking targets with more accurately described dynamics is highly needed. Here, we fall back to reduced hierarchical equation of motion (HEOM), for such a purpose. Even though HEOM is known to applicable only to simplified system that is coupled to a set of harmonic oscillators, it can provide ultimate accuracy within the regime of quantum-classical description, thus providing perfect benchmark targets for certain systems. We compare the evolution of the density matrix of pigment excited states by HEOM against the PBME results at physiological temperature, and observe more sophisticated changes of density matrix elements from HEOM. In PBME, the population of states with intermediate energies display only monotonically increasing behaviors. Most importantly, PBME suffers a serious issue of wrong population in the long time limit, likely generated by the zero-point energy leaking problem. Future prospects for developments are briefly discussed as a concluding remark.

Predicting Impacts of Climate Change on Sinjido Marine Food Web (기후변화로 인한 신지도 근해 해양먹이망 변동예측)

  • Kang, Yun-Ho;Ju, Se-Jong;Park, Young-Gyu
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The food web dynamics in a coastal ecosystem of Korea were predicted with Ecosim, a trophic flow model, under various scenarios of primary productivity due to ocean warming and ocean acidification. Changes in primary productivity were obtained from an earth system model 2.1 under A1B scenario of IPCC $CO_2$ emission and replaced for forcing functions on the phytoplankton group during the period between 2020 and 2100. Impacts of ocean acidification on species were represented in the model for gastropoda, bivalvia, echinodermata, crustacean and cephalopoda groups with effect sizes of conservative, medium and large. The model results show that the total biomass of invertebrate and fish groups decreases 5%, 11~28% and 14~27%, respectively, depending on primary productivity, ocean acidification and combined effects. In particular, the blenny group shows zero biomass at 2080. The zooplankton group shows a sudden increase at the same time, and finally reaches twice the baseline at 2100. On the other hand, the ecosystem attributes of the mean trophic level of the ecosystem, Shannon's H and Kempton's Q indexes show a similar reduction pattern to biomass change, indicating that total biomass, biodiversity and evenness shrink dynamically by impacts of climate change. It is expected from the model results that, after obtaining more information on climate change impacts on the species level, this study will be helpful for further investigation of the food web dynamics in the open seas around Korea.

Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker (초고압 복합소호 차단부의 열가스 거동 예측)

  • Kim, Jin-Bum;Yeo, Chang-Ho;Seo, Kyoung-Bo;Kweon, Ki-Yeoung;Lee, Hahk-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with $SF_6$ gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, $SF_6$-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF

Numerical dissipation for explicit, unconditionally stable time integration methods

  • Chang, Shuenn-Yih
    • Earthquakes and Structures
    • /
    • v.7 no.2
    • /
    • pp.159-178
    • /
    • 2014
  • Although the family methods with unconditional stability and numerical dissipation have been developed for structural dynamics they all are implicit methods and thus an iterative procedure is generally involved for each time step. In this work, a new family method is proposed. It involves no nonlinear iterations in addition to unconditional stability and favorable numerical dissipation, which can be continuously controlled. In particular, it can have a zero damping ratio. The most important improvement of this family method is that it involves no nonlinear iterations for each time step and thus it can save many computationally efforts when compared to the currently available dissipative implicit integration methods.

Diamagnetic Shift of a InGaP-AlInGaP Semiconductor Single Quantum Well under Pulsed-magnetic Fields

  • Choi, B.K.;Kim, Yongmin;Song, J.D.
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.156-161
    • /
    • 2015
  • Application of magnetic fields is important to characterize the carrier dynamics in semiconductor quantum structures. We performed photoluminescence (PL) measurements from an InGaP-AlInGaP single quantum well under pulsed magnetic fields to 50 T. The zero field interband PL transition energy matches well with the self-consistent Poisson-$Schr{\ddot{o}}dinger$ equation. We attempted to analyze the dimensionality of the quantum well by using the diamagnetic shift of the magnetoexciton. The real quantum well has finite thickness that causes the quasi-two-dimensional behavior of the exciton diamagnetic shift. The PL intensity diminishes with increasing magnetic field because of the exciton motion in the presence of magnetic field.

FINANCIAL SYSTEM: INNOVATIONS AND PRINCING OF RISKS

  • Melnikov, A.V.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1031-1046
    • /
    • 2001
  • The paper studies the evolution of the financial markets and pays the basic attention to the role of financial innovations (derivative securities) in this process. A characterization of both complete and incomplete markets is given through an identification of the sets of contingent claims and terminal wealths of self-financing portfolios. the dynamics of the financial system is described as a movement of incomplete markets to a complete one when the volume of financial innovations is growing up and the spread tends to zero (the Merton financial innovation spiral). Namely in this context the paper deals with the problem of pricing risks in both field: finance and insurance.

  • PDF

Use of Support Vector Regression in Stable Trajectory Generation for Walking Humanoid Robots

  • Kim, Dong-Won;Seo, Sam-Jun;De Silva, Clarence W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.565-575
    • /
    • 2009
  • This paper concerns the use of support vector regression (SVR), which is based on the kernel method for learning from examples, in identification of walking robots. To handle complex dynamics in humanoid robot and realize stable walking, this paper develops and implements two types of reference natural motions for a humanoid, namely, walking trajectories on a flat floor and on an ascending slope. Next, SVR is applied to model stable walking motions by considering these actual motions. Three kinds of kernels, namely, linear, polynomial, and radial basis function (RBF), are considered, and the results from these kernels are compared and evaluated. The results show that the SVR approach works well, and SVR with the RBF kernel function provides the best performance. Plus, it can be effectively applied to model and control a practical biped walking robot.

Use of Support Vector Machines in Biped Humanoid Robot for Stable Walking (안정적인 보행을 위한 이족 휴머노이드 로봇에서의 서포트 벡터 머신 이용)

  • Kim Dong-Won;Park Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.315-319
    • /
    • 2006
  • Support vector machines in biped humanoid robot are presented in this paper. The trajectory of the ZMP in biped walking robot poses an important criterion for the balance of the walking robots but complex dynamics involved make robot control difficult. We are establishing empirical relationships based on the dynamic stability of motion using SVMs. SVMs and kernel method have become very popular method for learning from examples. We applied SVM to model the practical humanoid robot. Three kinds of kernels are employed also and each result has been compared. As a result, SVM based on kernel method have been found to work well. Especially SVM with RBF kernel function provides the best results. The simulation results show that the generated ZMP from the SVM can be improve the stability of the biped walking robot and it can be effectively used to model and control practical biped walking robot.