• Title/Summary/Keyword: young fruit rot

Search Result 56, Processing Time 0.018 seconds

Incidence Rates of Major Diseases on Green-Fleshed Kiwifruit cv. Hayward and Yellow-Fleshed Kiwifruit cv. Haegeum (그린키위 품종 헤이워드와 골드키위 품종 해금의 주요 병 발병률)

  • Kim, Gyoung Hee;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • Incidence rates of bacterial canker, bacterial leaf spot and postharvest fruit rot on the Korean yellow-fleshed kiwifruit cv. Haegeum were compared with those on the most popular green-fleshed kiwifruit cv. Hayward grown in several naturally infected kiwifruit orchards in 2013 and 2014. The percentages of diseased leaves caused by bacterial canker were 18.5% and 17.3% on Hayward in 2013 and 2014, but those on Haegeum were 1.2% and 0%, respectively. The percentages of diseased leaves caused by bacterial leaf spot on Hayward were 63.5% and 16.2% in 2013 and 2014, respectively, but no bacterial leaf spots were observed on Haegeum in both years. The average percentages of diseased fruits caused by postharvest fruit rot were 24.2% and 20.5% on Hayward in 2013 and 2014, while 6.3% and 4.4% and Haegeum, respectively. Botryosphaeria dothidea was turned out to be the major pathogen of postharvest fruit rot on both cultivars.

Phytophthora Diseases of Apple in Korea: II. Occurrence of an Unusual Fruit Rot Caused by P. cactorum and P. cambivora (사과의 역병: II. Phytophthora cactorum과 P. cambivora에 의한 사과 과실역병의 발생)

  • Jee, Hyeong-Jin;Cho, Weon-Dae;Kim, Wan-Gyu
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 1997
  • An unusual young fruit rot of apple caused by two species of Phytophthora was epidemic from late May to early July of 1996 in Andong, Uisung and Chungwon areas of Korea. The disease spread to over 30 apple orchards in the areas and percent of the infected tree and fruit was ca. 10~90% and 1`15%, respectively. Water soaking lesions or spots on leaves and shoot blight were also developed by the pathogen. Among 39 isolates collected, 25 were identified as P. cactorum and the others were as zp. cambivora on the basis of their distinctive morphological characters. While the former fungus was homothallic, all isolates of the latter were A1 mating types. Koch's postulate was fulfilled. Both fungi showed strong pathogenicity not only to young fruits, leaves and shoots of apple but also to those of pear and peach. Several vegetables tested did not show symptoms even by wound inoculation. An Occurrence of young fruit rot of apple caused by Phytophthora has not been reported in Korea, especially, P. cambivora has not been recorded previously as the causal agent of the disease in the world.

  • PDF

Cladosporium sp. is the Major Causal Agent in the Microbial Complex Associated with the Skin Sooty Dapple Disease of the Asian Pear in Korea

  • Park, Young-Seob;Kim, Ki-Chung;Lee, Jang-Hoon;Cho, Song-Mi;Choi, Yong-Soo;Kim, Young-Cheol
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Skin sooty dapple disease, a fungal disease that lowers Asian pear fruit quality, has emerged recently in Korea but has not yet been thoroughly characterized. This disease affects the surface of fruit, leaves, and young shoots of the Asian pear, typically appearing as a dark or pale black dapple on the fruit surface. The disease initiates on the fruit with small circular lesions that become bigger, eventually spreading to form large circular or indefinite lesions. Sparse dark or flourishing white-greyish aerial mycelia and appearance of a dark or pale black dapple on the fruit surface are typical signs of this disease. The disease was severe during cold storage of the Niitaka and Chuhwangbae varieties, but more limited on the Gamcheonbae and Hwangkeumbae varieties. To identify causal pathogens, 123 fungal isolates were obtained from lesions. The fungi that caused typical skin sooty dapple disease symptoms in our bioassay were identified. Based on their morphological characteristics, 74% of the isolates were Cladosporium sp. and 5-7 % of the isolates were Leptosphaerulina sp., Tripospermum sp., or Tilletiopsis sp. None of the isolates caused severe soft rot by injection to a wound plug, but some of the Cladosporium sp. isolates caused mild maceration. Therefore this microbiol complex cannot account for the soft rot also observed in stored fruits. The high frequency of isolation of Cladosporium sp. from disease tissues and bioassay on pear fruit surface suggest that Cladosporium sp. could be a major pathogen in the microbial complex associated with skin sooty dapple disease of the Asian pear in Korea.

Occurrence of Brown Rot on Apricot Caused by Monilinia fructicola in Korea (Monilinia fructicola 에 의한 살구 잿빛무늬병)

  • Choi, In-Young;Kim, Ju;Seo, Kyoung-Won;Oh, Hun-Tak;Cho, Chong-Hyeon;Kim, Jin-Ho;Song, Young-Ju
    • Research in Plant Disease
    • /
    • v.22 no.2
    • /
    • pp.122-126
    • /
    • 2016
  • In June 2015, an exhibited typical signs and symptoms of brown rot was observed on fruit of Apricot cvs. Modern and Alexander at an incidence of 5% of fruit in Jeonju, Korea. Early symptoms on fruit showed small, circular, light brown spots that eventually destroyed the entire fruit. Small sporodochia appeared on the fruit surface. Fruit susceptibility to brown rot increases during the 1 to 2 weeks period prior to harvest. The conidia were one-celled, hyaline, lemon-shaped, $14.6-18.0{\times}8.5-11{\mu}m$, and borne in branched monilioid chains. Based on the morphological characteristics and phylogenetic analysis of internal transcribed spacer (ITS), the fungus was identified as Monilinia fructicola. A BLAST search revealed that sequences of the fungus shared 100% identity to those of M. fructicola. Pathogenicity of a representative isolate was proved by artificial inoculation, fulfilling Koch's postulates. To our knowledge, this is the first confirmed report on the occurrence of M. fructicola on apricot in Korea.

First Report of Black Rot Caused by Diplodia seriata on Apple (Diplodia seriata에 의한 사과 검은썩음병 발생보고)

  • Kim, Young Soo;Yun, Yun Joo;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • In 2018, symptoms of black rot on apple (Malus pumila var. dulcissima KOIDZ) cv. Fuji were observed in Yeongcheon-si, Korea. The fruit decay symptoms consisted of purple pimples spots, black rot around the seed cavity (calyx end), mummified fruit. To isolate the causal agent, small fragment (2 to 3 mm) of decayed tissue from the lesion margin were placed on WA or PDA. Fungal colonies on PDA produced dense white aerial mycelium, becoming dark gray with age. Pycnidia and conidia were observed under a light microscopy. The shapes of conidia were aseptate, ovoid, rounded at both ends, and $21.7-28.3{\times}9.9-15.3{\mu}m$. Based on morphological and cultural characteristics, this fungus was identified as Diplodia seriata. To confirm its identity, two loci (ITS and ${\beta}$-tubulin) were sequenced for molecular identification. BLAST searches indicated 100% identity with D. seriata. A pathogenicity test was conducted with isolates on Fuji apples. The apples were inoculated with mycelial plugs (5 mm) from 7-day-old cultures of the putative pathogens. All inoculated apples developed rot symptoms identical to the original symptoms, from which D. seriata were reisolated, fulfilling Koch's postulates. This study is the first report of black rot caused Diplodia seriata on apple.

Characterization of a Brown Rot Fungus Isolated from Dwarf Flowering Almond in Korea

  • Shim, Myoung-Yong;Jeon, Young-Jae;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.35 no.1
    • /
    • pp.30-35
    • /
    • 2007
  • The fruits showing brown rot symptom on dwarf flowering almond were found in Gongju, Chungchungnam-Do in Korea in July 2005. Small water-soaked lesions on the fruits were initiated, and gradually developed to soft rot covered with gray conidia. Then the diseased fruits were shrunk and became grayish-black mummies. A fungus was isolated from the diseased fruit and its morphological, cultural and molecular genetic characteristics were investigated. Typical blastospores of Monilinia spp. were observed under a light microscope both from tissues of the diseased fruits and from PDA-grown cultures. The fungus grew well at $25^{\circ}C$ and on PDA. The ITS ribosomal DNA region (650 bp) of the fungus was amplified by PCR and analyzed. Comparative data on ITS sequence homology among Monilinia spp., ITS sequence-based phylogram and morphological characteristics showed that the fungus is Monilinia fructicola. This is the first report on Monilinia fructicola causing brown rot on fruits of dwarf flowering almond in Korea.

Antifungal Activities on Organic Heritage Fungi and Antioxidative effect of Phellodendron amurense Extractives (황벽나무 추출물의 유기질 문화재 오염균에 대한 항균성 및 항산화 활성)

  • Hong, Jin-Young;Kim, Young-Hee;Jung, Mi-Hwa;Jo, Chang-Wook;Choi, Jung-Eun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.5
    • /
    • pp.54-61
    • /
    • 2010
  • Antifungal and antioxidative activities of Phellodendron amurense extracts were investigated for use as a natural preservative. After separation of P. amurense into phloem, xylem, leaf and fruit each part was subjected to methanol extraction. Each MeOH extract was further fractionated with several solvents(n-hexane, methylene chloride and ethylacetate). Among the methanol extracts, extracts of phloem and leaf inhibited effectively the growth of mold fungi and rot fungi, respectively. Especially, ethylacetate fraction from phloem showed the highest growth inhibitory effects against fungi tested, such as P. citreonigrum H3, P. toxicarium H4, P. corylophilu H5, A. clavatus, P. osteatus, S. commune, and G. lucidum. The fractions of fruit, which had lower antifungal activities mostly than those of phloem, strongly inhibited rot fungi such as G. lucidum, T. versicolor, and T. palustris. Compared to ferulic acid which is well known antioxidant, ethylacetate fraction of fruit showed high antioxidative activities on concentration of 1 to $100{\mu}g/m{\ell}$ in DPPH radical scavenging activity. As a result, antifungal and antioxidative activities of P. amurense suggest that its extract and fraction have a possibility as conservative of cultural heritage because it might get conservation effects against deteriorating microorganisms of cultural heritage.

Phytophthora-Induced Diseases on Citrus in Jeju Island

  • Hyun, Jae-Wook;Lee, Seong-Chan;Kim, Kwang-Sik;Jee, Hyeong-Jin
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.184-188
    • /
    • 2001
  • Phytophthora-induced diseases on citrus in Jeju island have been considered of minor importance because of the use as root stock of trifoliate orange, which is immune to Phytophthora. However, brown rot on fruit, which severely occurred in 1998 and 1999, has become a great threat to citrus production in the island. About one-half of the surveyed orchards were infected in 1998 and 4 out of 19 infected fields showed over 20% fruit infection rate. The disease was less severe in 1999, with an estimated infected area and total fruit reduction of 3,155 ha and 15,300 tons, respectively. Typical gummosis was also occasionally observed on cv. Shiranugi, which is mostly cultivated under plastic film houses. Two types of Phytophthora were consistently isolated from various plant parts, identified as P. citrophthora and P. nicotianae. The former was isolated from the aerial parts of the fruit, young leaf, and shoot in the fields. Meanwhile, the latter was only isolated from the basal stem showing gummosis in plastic film houses.

  • PDF

Characteristics of Brown Rot Caused by Monilinia fructicola on Stone Fruit in Korea (핵과류 잿빛무늬병을 일으키는 Monilinia fructicola 병해 특성)

  • Oh, Hun-Tak;Choi, In-Young;Kim, Ju;Na, Young-Eun;Lee, Wang-Hyu;Lee, Kui-Jae;Shin, Hyeon-Dong
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.322-333
    • /
    • 2017
  • In June and July 2015 and 2017, typical signs and symptoms of brown rot were observed on the fruit of Japanese apricot, peach, apricot, Japanese plum, and sweet cherry with incidence levels of 2-5% in Jeonju and Imsil, Korea. Early symptoms were small, circular, light brown spots that eventually destroyed entire fruit. Small sporodochia later appeared on the surface. Conidia isolated from each host were one-celled, hyaline, lemon-shaped and borne in branched monilioid chains. The optimal temperature range for hyphal growth of all the isolates was $20-25^{\circ}C$. The growth of hyphae was faster on potato dextrose agar and oatmeal agar than others. Multiple alignments using the ITS sequences from different host showed that they matched each other (100%). The ITS sequences showed 100% identity to those of M. fructicola. Based on the morphological characteristics and phylogenetic analysis via internal transcribed spacer (ITS), all the isolate was identified as M. fructicola. Pathogenicity of representative isolates was proved by artificial inoculation, fulfilling Koch's postulates. This is the first confirmed report on brown rot caused by M. fructicola on stone fruit in Korea.