길거리에서 묻지마 범죄가 자주 발생함에 따라 CCTV의 보급이 증가하고 있다. 그러나 수동적으로 작동되는 CCTV의 단점 때문에 지능형 CCTV의 필요성이 주목 받고 있다. 이러한 지능형 CCTV의 무거운 시스템 때문에, 높은 성능의 기기들이 필요해 일반 CCTV를 대체하는데 비용적 측면에서 부담이 발생한다. 이 문제를 해결하기 위해 낮은 품질의 영상도 인식하며 높지 않은 성능의 기기에서도 시스템이 구동되는 지능형 CCTV 시스템이 필요하다. 따라서 본 논문은 AWS 기반 플랫폼을 활용하여 시스템을 경량화하고 영상을 텍스트화하여 실시간으로 위협을 감지할 수 있는 Saying CCTV 시스템을 제안한다. 이는 YOLO v4와 OpenPose를 사용해 추출한 데이터를 바탕으로 위험 객체와 위협 행동 그리고 위협 상황을 판단하며, 위험도를 머신러닝으로 계산하도록 구현하였다. 이를 통해, 언제 어디서나 네트워크만 연결되면 시스템을 동작시킬 수 있으며, 영상 촬영과 이미지 업로드가 최소한의 성능의 기기에서도 시스템 사용이 가능하다. 나아가 영상을 분석하여 텍스트로 저장되는 데이터들로 하여금 범죄의 유의미한 통계를 자동화하여 신속한 범죄 예방이 가능하다.
철강은 기계 산업의 가장 기본적인 구성 요소 중 하나이다. 그러나 철강의 표면 결함은 제품의 품질에 큰 영향을 미친다. 따라서 연구자들은 표면 결함 감지기의 필요성에 주목하고 딥 러닝을 이용한 방법은 객체 결함 감지를 하는데 많이 사용된다. 연구 개발용으로 학습 모델 개발에 초점을 맞추지만 실제 산업환경에 실질적인 영향을 미치는 실시간 적용은 아직 적용되지 않는 한계와 개선의 여지가 필요하다. 본 연구는 YOLOv4를 기반으로 한 철강 표면 결함 감지의 실시간 적용을 제안한다. 첫째, 본 연구는 실시간 응용 모델을 적용하는 것을 목적으로 하며 실시간 객체 검출기의 가장 유명한 알고리즘 중 하나인 one-stage Detector의 YOLO 알고리즘을 중심으로 연구를 진행하였다. 둘째, 사전 훈련된 YOLOv4-Darknet 플랫폼 모델과 전이학습을 사용하여 철강 표면 오픈 소스 데이터셋 NEU-DET을 이용하여 학습과 테스트를 진행하였다. 본 연구에서는 철강 표면의 패치, 구멍 난 표면, 불순물, 스크래치 4가지 유형의 결함을 이용하였다. 셋째, 87.1% mAP@0.5의 정확도와 60fps 이상의 시스템 구축을 위해 YOLOv4를 이용하여 훈련된 모델의 실시간 성능을 평가하였다.
제조업의 안전보건 기준은 다양한 항목이 존재하지만, 질병 재해자 기준에서 업무상 질병과 근골격계 질환으로 나눌 수 있다. 이 중 근골격계 질환은 제조업에서 가장 많이 발생하며, 나아가서 제조 현장의 노동생산성감소 및 경쟁력 약화까지 유발할 수 있어서 이를 사전에 확인할 수 있는 시스템이 필요한 실정이다. 본 논문에서는 제조업 노동자의 근골격계 유해 요인을 검출하기 위하여 근골격계 부담작업 요인 분석 데이터 속성, 유해 요인 작업자세, 관절 키포인트를 정의하고 인공지능 학습용 데이터를 구축하였다. 구축한 데이터의 유효성을 판단하기 위해서 YOLO, Dite-HRNet, EfficientNet 등의 AI 알고리즘을 활용하여 학습하고 검증하였다. 실험 결과 사람 탐지 정확도는 99%, 탐지된 사람의 관절 위치 추론 정확도는 @AP0.5 88%, 추론된 관절 위치를 종합하여 자세를 평가한 정확도는 LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, LOWERARM 92.7%를 도출하였으며, 추가로 딥러닝 기반의 근골격계 질병을 예방할 수 있는 연구에 필요한 요소를 고찰하였다.
최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.
현 도로교통법상 도로 이용의 효율성과 교통안전 확보의 목적으로 차로 별 통행 가능 차종을 지정한 제도로써, 2020년 개정안이 현재 시행되고 있다. 독일과 국내의 자동차 1만 대당 교통사고 사망자 수를 비교하였을 때, 독일의 교통사고 사망자는 국내보다 현저히 낮은 수치를 기록하고 있다. 대표적으로 속도의 제한을 두지 않은 독일 아우토반의 사례는 한국의 속도위반법만이 사고율의 경감에 정답이 되지 않는다는 점을 시사한다. 아우토반 고속도로의 킵 라이트 원칙(keep right principle)에 따라 준수되는 지정차로제는 교통사고 감소에 큰 역할을 한다. 이러한 사실을 기반으로 지정차로제 위반 차량의 단속과 준수율 향상을 위한 교통 단속 시스템을 제안한다. 딥러닝 객체 인식 모델인 Yolo5를 이용하여 차종을 인식하고 OpenCV를 이용하여 차량 번호판과 차선을 인식 및 추출된 데이터를 서버에 저장하여 법규의 위반 여부를 판별하는 지정차로제 단속시스템을 개발한다. 이에 따라 운전자의 제도 인식 및 준수율의 향상을 통한 교통사고율의 감소 효과가 있을 것으로 기대된다.
본 연구는 비점오염원 중 하나인 야적퇴비의 효율적인 탐지를 위해 You Only Look Once (YOLO)v8 모델과 DeepLabv3+ 모델의 적용 가능성을 평가하였다. 무인항공기(Unmanned Aerial Vehicle, UAV)를 이용하여 수집된 고해상도 영상을 바탕으로, 두 모델의 정량적 및 정성적 성능을 비교 분석하였다. 정량적 평가에서 YOLOv8 모델은 다양한 지표에서 우수한 성능을 나타내며, 특히 야적퇴비의 덮개 유무를 정확하게 식별할 수 있는 능력을 보였다. 이러한 결과는 YOLOv8 모델이 야적퇴비의 정밀한 탐지 및 분류에 효과적임을 시사하며, 이를 바탕으로 야적퇴비의 관리 등급을 산정하고 비점오염원 관리에 기여할 수 있는 새로운 접근 방법을 제공한다. 본 연구는 UAV와 딥러닝 기술을 활용한 야적퇴비 탐지 및 관리가 기존 현장 조사 방식의 한계를 극복하며 정확하고 효율적인 비점오염원 관리 전략 수립 및 수계환경 보호에 기여할 것으로 기대된다.
최근 도심지 도로에서 빈번하게 발생하는 도로 파임의 주원인인 지하 공동의 발생을 파악하기 위해, 차량 부착형 지표투과레이더(GPR)를 통해 얻은 대량의 취득 자료를 효율적으로 처리하기 위한 기계학습 기반 공동 탐지 기술이 활발하게 연구되고 있다. 그러나 기계학습 자료 생성 시 단순한 영상 처리 기법들만 활용되고 있고, 탄성파 탐사나 GPR 자료 처리에 시도되었던 여러 기법들은 충분히 활용되지 못하고 있다. 이 연구에서는 지하 공동의 탐지가 대부분 회절파의 탐지에 의해 이루어진다는 점에 착안하여 GPR 자료로부터 회절파를 분리하여 YOLO v5 모델을 이용한 도로 하부 공동 탐지 모델의 성능을 향상시켰다. 탄성파에서 개발된 기계학습 기반 회절파 분리 기법을 GPR 자료에 맞게 변형한 후, GPR 현장 자료에서 회절파를 분리하여 공동 탐지 모델의 입력으로 사용하였다. 서울시 공공 개방 GPR 자료를 이용하여 제안된 방법의 성능을 검증한 결과, 회절파 분리를 이용했을 때 더 정확하게 공동 및 지하 구조물을 탐지하는 것을 확인하였다. 또한 제안된 회절파 분리 기법은 향후 GPR 탐사가 이용되는 다양한 분야에서 활용될 수 있을 것으로 기대된다.
최근 최저시급의 가파른 인상으로 인건비에 대한 부담이 늘어남과 함께 코로나19의 여파로 무인 상점의 점유율이 높아지고 있는 추세이다. 그로 인해 무인 점포를 타겟으로 하는 도난 범죄들도 같이 늘어나고 있어 이러한 도난 사고를 방지하기 위해 Just-Walk-Out 시스템을 도입하고 고비용의 LiDAR 센서, 가중치 센서 등을 사용하거나 수동으로 지속적인 CCTV 감시를 통해서 확인하고 있다. 하지만 이런 고가의 센서를 많이 사용할수록 점포 운영에 있어 비용 부담이 늘어나게 되고, CCTV 확인은 관리자가 24시간 내내 감시하기 어려워서 사용이 제한적이다. 본 연구에서는 이런 센서들이나 사람에 의지하는 부분을 해결할 수 있고 무인점포에서 사용할 수 있는 저비용으로 도난 등의 이상행동을 하는 고객을 탐지하여 클라우드 기반의 알림을 제공하는 인공지능 영상 처리 융합 알고리즘을 제안하고자 한다. 또한 본 연구에서는 mediapipe를 이용한 모션캡쳐, YOLO를 이용한 객체탐지 그리고 융합 알고리즘을 통해 무인 점포에서 수집한 행동 패턴 데이터를 바탕으로 각 알고리즘들에 대한 정확도를 확인하며 다양한 상황 실험을 통해 융합 알고리즘의 성능을 증명했다.
CCTV는 범죄 예방, 공공 안전 강화, 교통 관리 등 다양한 목적으로 사용된다. 그러나 카메라의 범위와 해상도가 향상됨에 따라 영상에서 개인의 신상정보가 노출되는 위험성이 있다. 따라서 영상에서 개인 정보를 보호함과 동시에 개인을 식별할 수 있는 새로운 기술의 필요성이 존재한다. 본 논문에서는 객체 식별 및 추적을 위한 히스토그램 기반 특이값 분해를 제안한다. 제안하는 방법은 객체의 색상 정보를 이용하여 영상에 존재하는 서로 다른 객체를 구분한다. 객체 인식을 위하여 YOLO와 DeepSORT를 이용해 영상에 존재하는 사람을 탐지 및 추출한다. 탐지된 사람의 위치 정보를 이용해 흑백 히스토그램으로 색상 값을 추출한다. 추출한 색상 값 중 유의미한 정보만을 추출하여 사용하기 위해 특이값 분해를 이용한다. 특이값 분해를 이용할 때 결과에서 상위 특이값의 평균을 이용함으로 객체 색상 추출의 정확도를 높인다. 특이값 분해를 이용해 추출한 색상 정보를 다른 영상에 존재하는 색상과 비교하며 서로 다른 영상에 존재하는 동일 인물을 탐지한다. 색상 정보 비교를 위해 유클리드 거리를 이용하며 정확도 평가는 Top-N을 이용한다. 평가 결과 흑백 히스토그램과 특이값 분해를 사용하여 동일 인물을 탐지할 때 최대 100%에서 최소 74%를 기록하였다.
본 논문에서는 김치 제조 공정 중 배추 심 제거 공정의 로봇 자동화를 위한 배추 심 영역 및 깊이를 판별하는 딥러닝 모델을 제안하는 것이다. 또한 계측된 배추의 심 깊이를 예측하는 것이 아닌 discrete 클래스로 변환하여 영역 검출 및 분류를 동시에 하는 모델을 제시하였다. 딥러닝 모델 학습 및 검증을 위하여 전처리 과정을 거지치 않고 수확된 배추 522 포기에 대한 RGB 영상을 획득하였다. 획득한 영상으로부터 심 영역 및 깊이 라벨링 그리고 데이터 증강 기법을 적용하였다. 제안하는 YOLO-v4 딥러닝 모델 기반 배추 심 영역 검출 및 분류 모델의 성능을 평가하기 위하여 mAP, IoU, accuracy, sensitivity, specificity 그리고 F1-score로 선정하였다. 그 결과 배추 심 영역 검출은 mAP 그리고 IoU 값이 각각 0.97 그리고 0.91로 나타났으며, 심 깊이 분류의 경우 accuracy 그리고 F1-score 값이 각각 96.2% 그리고 95.5%로 나타났다. 본 연구 결과를 통하여 배추의 심 영역 검출 및 깊이 정보 분류가 가능하며, 추후 배추 심 제거 공정의 로봇-자동화 시스템 개발에 활용될 수 있는 가능성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.