The Journal of the Convergence on Culture Technology
/
v.8
no.5
/
pp.735-740
/
2022
The construction is the industry with the highest fatalities, and the fatalities has not decreased despite various institutional improvements. Accordingly, real-time safety management by applying artificial intelligence (AI) to CCTV images is emerging. Although some research on worker detection by applying AI to images of construction sites is being conducted, there are limitations in performance expression due to problems such as complex background due to the nature of the construction industry. In this study, the YOLO model and the OpenPose model were fused to improve the performance of worker detection and posture estimation to improve the detection performance of workers in various complex conditions. This is expected to be highly useful in terms of unsafe behavior and health management of workers in the future.
The Journal of the Korea institute of electronic communication sciences
/
v.18
no.1
/
pp.63-70
/
2023
Due to the spread of high-definition black boxes and the introduction of mobile applications such as 'Smart Citizens Report' and 'Safety Report', the number of public interest reports for violations of Traffic Law has increased rapidly, resulting in shortage of police personnel to handle them. In this paper, we describe the development of a system that can automatically detect lane violations which account for the largest proportion of public interest reporting videos for violations of traffic laws, using deep learning algorithms. In this study, a method for recognizing a vehicle and a solid line object using a YOLO model and a Lanenet model, a method for tracking an object individually using a deep sort algorithm, and a method for detecting lane change violations by recognizing the overlapping range of a vehicle object's bounding box and a solid line object are described. Using this system, it is expected that the shortage of police personnel in charge will be resolved.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.05a
/
pp.465-468
/
2022
The incidence of traffic accidents is increasing every year, and Korea is among the top OECD countries. In order to improve this, various road traffic laws are being implemented, and various traffic control methods using equipment such as unmanned speed cameras and traffic control cameras are being applied. However, as drivers avoid crackdowns by detecting the location of traffic control cameras in advance through navigation, a mobile crackdown system that can be cracked down is needed, and research is needed to increase the recognition rate of vehicle license plates on the side of the road for accurate crackdown. This paper proposes a method to improve the vehicle number recognition rate on the road side by applying a gradient correction algorithm using image processing. In addition, custom data learning was conducted using a CNN-based YOLO algorithm to improve character recognition accuracy. It is expected that the algorithm can be used for mobile traffic control cameras without restrictions on the installation location.
Journal of the Institute of Convergence Signal Processing
/
v.23
no.4
/
pp.249-255
/
2022
Potholes are an important clue to the structural defects of asphalt pavement and cause many casualties and property damage. Therefore, accurate pothole detection is an important task in road surface maintenance. Many machine learning technologies are being introduced for pothole detection, and data preprocessing is required to increase the efficiency of deep learning models. In this paper, we propose a preprocessing method that emphasizes important textures and shapes in pothole datasets. The proposed preprocessing method uses intensity transformation to reduce unnecessary elements of the road and emphasize the texture and shape of the pothole. In addition, the feature of the porthole is detected using Superpixel and Sobel edge detection. Through performance comparison between the proposed preprocessing method and the existing preprocessing method, it is shown that the proposed preprocessing method is a more effective method than the existing method in detecting potholes.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.320-322
/
2021
As the world's elderly population increases, the proportion of visually impaired is also increasing, and there are still many restrictions on the use of outside activities, such as safety problems and lack of guidance information. To solve this problem, research on smart devices such as smart glasses with optical character recognition (OCR) function is being actively conducted. In this paper, we propose a system that recognizes obstacles ahead and informs information by voice, and also guides the way to the destination. Using the deep learning object recognition model Yolo, it let them to recognize the risk factors as obstacles such as stairs and Larva cones. and it also deliver the information with a voice. so you can expect that the visually impaired can do a lot of different activity even more now that system takes the visually impaired to the destination by using the directions API, voice recognition, TTS library.
Kim, Chaehyeon;Yu, Sara;Yoon, SeoYoung;Kim, Gayoung;Kong, Hyeonjeong;Lee, Jinbok;Song, Sungmin;Lee, Ki Yong
Annual Conference of KIPS
/
2022.11a
/
pp.622-624
/
2022
최근 편리성과 경제성 등의 이유로 개인형 이동장치인 전동 킥보드의 사용이 증가하고 있다. 사용자들은 앱으로 주변의 전동 킥보드 위치를 확인한 뒤, 가까운 기기를 찾아 이용한다. 하지만 전동 킥보드의 위치는 GPS로 표시되기 때문에 10 m 이상의 오차가 날 수 있다. 이를 보완하기 위해 (주)올룰로의 킥고잉은 사용자가 전동 킥보드 반납 시 촬영한 전동 킥보드 사진을 GPS 위치 정보와 함께 제공한다. 이 사진을 통해 다음 사용자는 더욱 정확히 전동 킥보드를 찾을 수 있다. 하지만 일부 사용자들은 전동 킥보드가 존재하지 않는 사진을 올리기도 하며, 따라서 사용자들이 촬영한 사진 중 실제 전동 킥보드가 존재하는 사진들만 제공하는 것은 매우 중요하다. 따라서 본 논문은 사용자들이 촬영한 사진 중 실제 전동 킥보드가 존재하는 사진들만 정확히 인식하는 YOLO 기반 시스템을 개발한다. 제안 방법은 (1) 전동 킥보드를 부분별로 탐지하는 기법과 (2) 전동 킥보드를 촬영된 각도에 따라 세분화하여 인식하는 기법을 사용한다. 실제 사용자들이 촬영한 사진을 사용한 실험 결과, 제안 방법은 기존 방법에 비해 더욱 정확히 전동 킥보드 사진을 인식하는 것을 확인하였다.
Ganghyun Park;Suho Bak;Seonwoong Jang;Shinwoo Gong;Jiwoo Kwak;Yangwon Lee
Korean Journal of Remote Sensing
/
v.39
no.5_3
/
pp.909-919
/
2023
Benthic marine invertebrates, the invertebrates living on the bottom of the ocean, are an essential component of the marine ecosystem, but excessive reproduction of invertebrate grazers or pirate creatures can cause damage to the coastal fishery ecosystem. In this study, we compared and evaluated You Only Look Once Version 7 (YOLOv7), the most widely used deep learning model for real-time object detection, and detection tansformer (DETR), a transformer-based model, using underwater images for benthic marine invertebratesin the coasts of South Korea. YOLOv7 showed a mean average precision at 0.5 (mAP@0.5) of 0.899, and DETR showed an mAP@0.5 of 0.862, which implies that YOLOv7 is more appropriate for object detection of various sizes. This is because YOLOv7 generates the bounding boxes at multiple scales that can help detect small objects. Both models had a processing speed of more than 30 frames persecond (FPS),so it is expected that real-time object detection from the images provided by divers and underwater drones will be possible. The proposed method can be used to prevent and restore damage to coastal fisheries ecosystems, such as rescuing invertebrate grazers and creating sea forests to prevent ocean desertification.
Sun-Been Park;Yu-Jeong Jeong;Da-Eun Lee;Tae-Kook Kim
Journal of Internet of Things and Convergence
/
v.10
no.2
/
pp.103-108
/
2024
In this paper, a smart elevator system was studied using real-time object detection technology based on YOLO(You only look once)v5. When an external elevator button is pressed, the YOLOv5 model analyzes the camera video to determine whether there are people waiting, and if it determines that there are no people waiting, the button is automatically canceled. The study introduces an effective method of implementing object detection and communication technology through YOLOv5 and MQTT (Message Queuing Telemetry Transport) used in the Internet of Things. And using this, we implemented a smart elevator system that determines in real time whether there are people waiting. The proposed system can play the role of CCTV (closed-circuit television) while reducing unnecessary power consumption. Therefore, the proposed smart elevator system is expected to contribute to safety and security issues.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.37
no.3
/
pp.261-273
/
2024
This paper is an experimental study on the improvement of smoke and flame detection from different materials with YOLO. For the study, images of fires occurring in various materials were collected through an open dataset, and experiments were conducted by changing the main factors affecting the performance of the fire object detection model, such as the bounding box, polygon, and data augmentation of the collected image open dataset during data preprocessing. To evaluate the model performance, we calculated the values of precision, recall, F1Score, mAP, and FPS for each condition, and compared the performance of each model based on these values. We also analyzed the changes in model performance due to the data preprocessing method to derive the conditions that have the greatest impact on improving the performance of the fire object detection model. The experimental results showed that for the fire object detection model using the YOLOv5s6.0 model, data augmentation that can change the color of the flame, such as saturation, brightness, and exposure, is most effective in improving the performance of the fire object detection model. The real-time fire object detection model developed in this study can be applied to equipment such as existing CCTV, and it is believed that it can contribute to minimizing fire damage by enabling early detection of fires occurring in various materials.
This study provides several methods to minimize dead zone and to detect missing person using combined DRONE and AI especially called 4 th Industrial Revolution. That is composed of image acquisition for a person who is in needed of support. The procedure is DRONE that is made of image acquisition and transfer system. after that can be shown GPS information. Currently representative AI algorithm is YOLO (You Only Look Once) that can be adopted to find manikin or real image by learning with dataset. The output was reached in reliable and efficient results. As the trends of DRONE is expanded widely that will provide various roll. This paper was composed of three parts. the first is DRONE specification, the second is the definition of AI and procedures, the third is the methods of image acquisition using DRONE, the last is the future of DRONE with AI.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.