• 제목/요약/키워드: yield strength

검색결과 2,068건 처리시간 0.028초

고항복비-고강도강의 유강혼합구조 시스템 적용에 관한 실험적 연구 (An Experimental Study of Flexible-Stiff Mixed System of High Yield Ratio-High Strength Steel for the Practical Use)

  • 오상훈;김진원;문태섭
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.395-405
    • /
    • 2005
  • 본 논문은 고항복비-고강도강의 효율적인 이용을 위하여 유강혼합구조 시스템의 실험결과를 요약한 것이다. 최근 건축구조물에서도 대형화 및 초고층화 되어감에 따라 사용강재에 대하여 높은 성능을 요구하게 되었고, 고강도강을 사용해야 하는 경우가 늘고 있다. 하지만 고강도강은 항복비가 높고 최대 응력시 변형도가 작고 탄성계수가 연강과 같다는 단점으로 인하여 수요가 증가하고 있지 못한 실정이다. 이러한 고항복비를 가지는 고강도강의 결점을 보완하고 효과적인 사용을 위해서는 새로운 구조시스템이 필요하다. 본 연구에서는 고항복비를 가지는 고강도강을 건축구조물에 효과적으로 적용할 수 있는 방안으로 유강혼합구조 시스템을 제안하고, 고강도강이 포함된 유강혼합기둥 실험을 통하여, 고강도강을 효율적으로 사용할 수 있는 가능성을 제시하고자 하였다. 내력비와 강성비를 포함할 수 있는 강요소 (stiff element)와 유요소 (flexible element)의 항복변형비를 변수로 하여, 유강혼합구조시스템 적용시 적절한 항복변형비를 찾고자 하였다. 실험결과 제안된 유강혼합구조시스템은 연강만으로 이루어진 시스템에 비해 높은 에너지 흡수능력을 보여주었고, 강요소에 대한 유요소의 항복변형비가 2.7~3.3일 때 가장 큰 에너지 흡수능력을 갖는 것을 확인할 수 있었다.

철근 콘크리트용 봉강의 역학적 특성의 통계적 변동성 (Statistical Variability of Mechanical Properties of Reinforcements)

  • 김지상;백민희
    • 대한토목학회논문집
    • /
    • 제31권2A호
    • /
    • pp.115-120
    • /
    • 2011
  • 철근콘크리트 부재의 강도는 시공오차, 부재단면치수, 철근 및 콘크리트 재료의 역학적 특성 등의 불확실성 때문에 통계적인 변동성을 보인다. 부재 저항강도의 불확실성을 고려하고 신뢰성을 확보하기 위하여는 이러한 불확실성에 대한 정확한 평가가 필요한데, 국내의 경우 특히 철근의 역학적 특성 변동성에 대한 실험 및 연구가 활발하지 못하여 국내 설계기준작성의 기초가 되는 자료는 주로 외국의 연구 성과를 인용하고 있다. 이 논문에서는 우리나라 실정에 맞는 철근의 확률모델을 개발하기위하여 국내에서 생산된 철근의 강도특성자료를 수집하여 강도와 지름, 생산회사별로 분석하였다. 그 결과 철근의 항복강도의 확률특성은 베타분포로 모델링 하는 것이 타당한 것으로 나타났으며 공칭항복강도와 철근제조회사, 그리고 철근의 직경이 철근강도에 통계적 특성에 큰 영향은 미치지 않는 것으로 나타났다.

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Shear strength formula of CFST column-beam pinned connections

  • Lee, Seong-Hui;Kim, Young-Ho;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • 제13권5호
    • /
    • pp.409-421
    • /
    • 2012
  • Recently, as the height of building is getting higher, the applications of CFST column for high-rise buildings have been increased. In structural system of high-rise building, The RC core and exterior concrete-filled tubular (CFST) column-beam pinned connection is one of the structural systems that support lateral load. If this structural system is used, due to the minimal CFST column thickness compared to that of the CFST column width, the local moment occurred by the eccentric distance between the column flange surface from shear bolts joints degrades the shear strength of the CFST column-beam pinned connections. This study performed a finite element analysis to investigate the shear strength under eccentric moment of the CFST column-beam pinned connections. The column's width and thickness were used as variables for the analysis. To guarantee the reliability of the finite element analysis, an actual-size specimens were fabricated and tested. The yield line theory was used to formulate an shear strength formula for the CFT column-beam pinned connection. the shear strength formula was suggested through comparison on the results of FEM analysis, test and yield lime theory, the shear strength formula was suggested.

Bearing Strength of Glass Fiber Reinforced Glulam Bolted Connection

  • Kim, Keon-ho;Hong, Soon-il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권5호
    • /
    • pp.652-660
    • /
    • 2015
  • To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.

고장력 철근을 사용한 RC부재의 부착특성에 관한 해석 및 실험 (Analysis and Environment on Bond Characteristic of High-Strength Steel RC Members)

  • 곽성태;윤영수;송영철;우상균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.443-448
    • /
    • 2001
  • This paper presents a bond characteristics of high strength steel reinforced concrete members. High strength steel is what yield strength is higher than that of normal strength steel. So, the amount of flexural steel needed in R.C. members can be decreased. In result, it is expected that the workability and structure quality can improve and man power can minimize. For this purpose, specimens were made and tested with experimental parameters, such as concrete strength, steel diameter and yield strength. The result showed that under same tensile force of steel, in case of substituting normal strength steel with high strength steel, maximum bond stress increased and development length didn't almost change. In addition, the governing equation of bond and bond stress verse slip relationship were derived and compared with test values such as maximum bond stress, slip and bond stiffness.

  • PDF

철근콘크리트용 봉강의 역학적 성질의 통계적 특성 (Statistical Characteristics of Mechanical Properties of Reinforcing Bars)

  • 김지상;신정호;문재흠;김주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.429-430
    • /
    • 2009
  • 휨을 받는 철근콘크리트 부재의 저항특성은 철근의 인장강도에 크게 영향을 받으므로 저항강도의 불확실성을 고려하고 신뢰성을 확보하기위해 철근의 역학적 특성에 내재된 불확실성에 대한 정확한 평가가 필요하다. 이 논문에서는 재료기본특성의 불확실성 평가연구의 하나로 진행된 철근의 역학적 특성에 대한 확률 모델도출과정을 정리하고 그 결과를 분석하였다.

  • PDF

고항복비 강재를 이용한 내진구조시스템의 내진성능 (Earthquake Resistance Performance of Frames with High-Yield Ratio Steels)

  • 오상훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.211-219
    • /
    • 2005
  • Nowadays, various grades of high-strength steels are available. The application of ultra-high grades of steels for building structures, however, is limited only to the elements stressed under tension. The highest grade of steels generally used has a tensile strength of around 600N/mm2. Most research is focused on lower yield ratios of high strength steel in the inelastic range to ensure the stability of structures. In this paper, however, the possibility of an effective application of high strength steel with high yield ratio to building structures is discussed. An efficient structural system and a design method based on earthquake response analysis and experimental results are proposed.

  • PDF

소재강도와 두께가 파이프 굽힘변형의 꺽임발생 거동에 미치는 영향 (The Effects of Sheet Strength and Thickness on Bending Behavior of Steel Pipes)

  • 박기철;이형진
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2071-2081
    • /
    • 1995
  • In order to examine the effects of yield stress, tensile strength and thickness on the buckling behavior during bending of pipes, the nonlinear finite element analysis of the 3-point bending tests was carried out using the commercial software (ABAQUS) under the condition of L4(2$^{3}$) performed according to the designed condition. Form the analysis of simulation results, it was found that yield stress and thickness were the major factors on buckling load at pipe bending and tensile strength gave little influence because the plastic strain and plastic zone are small. For the punch displacement to the occurrence of buckling, thickness is a major factor and yield stress and tensile strength are the minor factors.

비배수 전단강도에 따른 압입식 경량강재앵커블록의 거동 특성 (Characteristics of Behavior of Pressurized light-weight steel Anchor according to undrained shear strength)

  • 허열;안광국;박경수;이용준;강홍식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.219-224
    • /
    • 2009
  • In this study, the characteristics of pullout behavior of Pressurized light-weight steel Anchor was investigated through centrifuge model tests considering pull-out angle $0^{\circ}$ with changing undrained shearstrength(0~1, 2~4, 5~7kPa) of clay. According to the results of tests, the yield pullout load of clay ground was gradually increased up to 30% as undrained shear strength was increased. Therefore, it was known that the yield pullout load was affected by increasing the undrained shear strength, in addition, the pattern of behavior was not changed.

  • PDF