• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.03 seconds

Roasting and Cryogenic Grinding Enhance the Antioxidant Property of Sword Beans (Canavalia gladiata)

  • Jung, Ju-Yeong;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1706-1719
    • /
    • 2020
  • The objective of this study was to optimize the conditions for enhancing the antioxidant properties of sword bean (Canavalia gladiata) as a coffee substitute in two processing methods, roasting and grinding. The optimum conditions for removing off-flavor of the bean and maximizing functionality and efficiency were light roasting and cryogenic grinding (< 53 ㎛). In these conditions, extraction yield was 16.75%, total phenolic content (TPC) was 69.82 ± 0.35 mg gallic acid equivalents/g, and total flavonoid content (TFC) was 168.81 ± 1.64 mg quercetin equivalents/100 g. The antioxidant properties were 77.58 ± 0.27% for DPPH radical scavenging activity and 58.02 ± 0.76 mg Trolox equivalents/g for ABTS radical scavenging activity. The values for TFC and ABTS radical scavenging activity were significantly higher (p < 0.05) than in other conditions, and TPC and DPPH radical scavenging activity were second highest in lightly roasted beans, following raw beans. HS-SPME/GC-MS analysis confirmed that the amino acids and carbohydrates, which are the main components of sword bean, were condensed into other volatile flavor compounds, such as derivatives of furan, pyrazine, and pyrrole during roasting. Roasted and cryogenically ground (cryo-ground) sword beans showed higher functionality in terms of TFC, DPPH, and ABTS radical scavenging activities compared to those of coffee. Overall results showed that light roasting and cryogenic grinding are the most suitable processing conditions for enhancing the bioactivity of sword beans.

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

Fatigue crack growth characteristics of nitrogen-alloyed type 347 stainless steel under operating conditions of a pressurized water reactor

  • Min, Ki-Deuk;Hong, Seokmin;Kim, Dae-Whan;Lee, Bong-Sang;Kim, Seon-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.752-759
    • /
    • 2017
  • The fatigue crack growth behavior of Type 347 (S347) and Type 347N (S347N) stainless steel was evaluated under the operating conditions of a pressurized water reactor (PWR). These two materials showed different fatigue crack growth rates (FCGRs) according to the changes in dissolved oxygen content and frequency. Under the simulated PWR conditions for normal operation, the FCGR of S347N was lower than that of S347 and insensitive to the changes in PWR water conditions. The higher yield strength and better corrosion resistance of the nitrogen-alloyed Type 347 stainless steel might be a main cause of slower FCGR and more stable properties against changes in environmental conditions.

Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology

  • Jang, Seol;Lee, A. Yeong;Lee, A. Reum;Choi, Goya;Kim, Ho Kyoung
    • Integrative Medicine Research
    • /
    • v.6 no.4
    • /
    • pp.388-394
    • /
    • 2017
  • Background: The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. Methods: The optimal extraction temperature ($X_1$), extraction time ($X_2$), and methanol concentration ($X_3$) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Results: Statistical analyses revealed that three variables and the quadratic of $X_1$, $X_2$, and $X_3$ had significant effects on the yields and were followed by significant interaction effects between the variables of $X_2$ and $X_3$ (p<0.01). A 3D response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, $69^{\circ}C$; extraction time, 34?min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). Conclusion: The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.

Effects of Shading on the Growth and Chlorophyll Fluorescence under Agrivoltaic System Conditions

  • Hoejeong Jeong;Myeong-Gue Choi;Woon-Ha Hwang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.120-120
    • /
    • 2022
  • Agrivoltaic System (AVS) was introduced with the concept that it could generate electricity by using the extra light remain after crops use for photosynthesis in farm, which can earn additional income. However, crop yield was declined under the AVS condition due to the decrease in light energy. In the past, many researchers have been studied about crop states under shading conditions. However, the phenomenon of partial shading such as under the AVS is not well studied. In this study, to figure out the response of crop under the different light conditions, the electron transport rate (ETR) and non-photochemical quenching (NPQ) of rice was investigated using the chlorophyll fluorescence measurement. Also, physiological changes of crops under the shading conditions were investigated. The growth experiment under partial shading under AVS and overall shading which made of 35% shade cloth was conducted to understand the eco-physiological responses of rice to light in terms of the photosynthesis. Under the shading conditions, SPAD value and chlorophyll contents were higher, but the leaf thickness was lower than control. The overall shading condition show lower ETR than others during the growing season. In contrast, NPQ was higher than other treatments. This means the available light energy cannot contribute to photosynthesis under the shading condition.

  • PDF

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng (추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링)

  • Gee Dong Lee
    • Food Science and Preservation
    • /
    • v.30 no.5
    • /
    • pp.857-867
    • /
    • 2023
  • In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.

The Effect of Deep Layer Split Application of Nitrogen Fertilizer on the Growth of Rice Plant (질소비료(窒素肥料)의 심층추비시용(深層追肥施用)이 수도생육(水稻生育)에 미치는 영향(影響))

  • Maeng, D.W.;Kim, W.C.
    • Applied Biological Chemistry
    • /
    • v.20 no.1
    • /
    • pp.147-155
    • /
    • 1977
  • In this experiment, we expected yield increase depending on the control of ineffective tiller, heightening of effective tillering ratio and continuous supply of nitrogen until later growth stage of rice plant by deep layer split application. Treats were applied at Tongil and Jinheung variety, clayey loam and sandy loam soil, and drained and non-drained condition. Nitrogenous fertilizer application wab adopted as liquefied(50%) and lumped (50% and 80%) fertilizer at 12cm depth of soil before 35 days of rice heading time against the standard soil surface application. The results are summarized as follaw. 1. a. Jinheung showed great variant width of tiller numbers per rice plant growth stage, and low effective tillering ratio at soil surface dressing. But in the case of deep layer split application, the number of tiller increased normally, and effective tillering ratio was high. b. At Tonsil, the width of increase and decrease range of effective tiller number between soil surface dressing and deep layer split application was not so high as Jinheung. Deep layer split application of 80% lumped fertilizer showed maximum effective tillering ratio ($83%{\sim}93%$). C. In the case of Jinheung, it was supposed that deep layer split application of 80% lumped fertilizer was excessive nitrogen quantity. d. Effective tillering ratio was higher than Tonsil at Jinheung. 2. The number of grains per hill was increased by the deep layer split application, but the ripening ratio was decreased inversely with the increase of total grain number. 3. Length of top leaves was elongated at Jinheung by deep layer split application. It showed significant correlation between top leaves length and grain yield. 4. Deep layer split application inclosed N content of harvested straw. Yield and N content of straw showed possitive correlation. 5. The ratio of unhulled grain yield per straw weight was increased by deep layer splication. This ratio was higher at Jinheung than Tonsil. 6. Grain yield was appeared in order of 80% lumped fertilizer>50% lumped fertilizer>50% liquefied fertilizer>surface dressing by the deep layer split application. The yield increasing factors were the increasing of effective tillering ratio, number of panicles per hill and number of ripening grains per hill. 7. Grain yield was increased at Tongil in sandy loam soil and at Jinheung in clayey loam soil by deep layer split application. 8. The grain yield was increased at drained conditions of clayey loam soil and non-drained conditions of sandy loam soil. But in the case of 80% lumped fertilizer of deep layer split application at the sandy loam soil, the yield was not increased at non-drained conditions. 9. The effect of yield increase by deep layer split application comparing with the surface dressing was higher at Tonsil than ginheung, in spite of low ripening ratio of Tonsil caused by low temperature at heading and harvesting time.

  • PDF

Study on Efficient Carbonizing Conditions When Carbonizing Fish Offal (어류폐기물의 탄화처리시 효율적 탄화조건에 관한 연구)

  • Jeong, Byung Gon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.4
    • /
    • pp.268-273
    • /
    • 2014
  • Experiments on carbonization were conducted using fish offal generated from fish market for the purpose of resource recycling. Elemental composition of fish offal and effect of carbonation temperature on the overall yield were investigated. Carbon and hydrogen contents of fish offal were 51.1% and 7.6%, respectively in view of elemental composition. Particularly, nitrogen and sulfur contents were as high as 9.8% and 1.0%, respectively. These values suggests that odor problem of fish offal can be serious. Comparing elemental composition of fish offal with other waste materials, it is thought that carbon and hydrogen contents are considerably high. These implies that thermal disposal will be the best option for final disposal method of fish offal. As a results of carbonization experiments on Mackerel, Hairtail, Croaker and mixed sample of Mackerel, Hairtail and Croaker, carbonization patterns were quite similar irrespective of fish species. Carbonization yield was varied significantly depending on carbonization temperature at the carbonization time of 5 minutes and 10 minutes. When the carbonization time was maintained longer than 30 minutes, yield variation depending on time variation at each temperature was insignificant. Thus, it can be concluded that effect of carbonization time on overall yield was minor when the carbonization time was maintained longer than 30 minutes. Primary vaporization in carbonization conducted at the temperature of $400^{\circ}C$ was minor. Thus, difference of yield between temperature of $500^{\circ}C$ and $400^{\circ}C$ was appeared greatly. It can be concluded that yield difference depending on carbonization temperature can be neglected if the carbonizing temperature exceed $600^{\circ}C$ and carbonizing time exceed 10 minutes at the same time.

The Soil Improvement and Plant Growth on the Newly-reclaimed Sloped Land -VIII. Annual Changes of Soil Physico-chemical Properties and Sweet Potato Yield (신개간경사지(新開墾傾斜地) 토양개량(土壤改良)과 작물생육(作物生育)에 관한 연구(硏究) -VIII. 물리화학성(物理化學性) 년차간(年次間) 변화(變化)와 고구마 수량(收量))

  • Hur, Bong-Koo;Lee, Ki-Sang;Choi, Kwan-Soon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.189-194
    • /
    • 1994
  • This experiment was conducted to obtain basic information on the improved methods of soil physico-chemical properties and sweet potato yield cultivated on a newly-reclaimed land, a Songjeong loam soil. The crop was cultivated under the six different treatments for 4years since 1985 in the field conditions. Annual changes of soil properties and sweet potato yield were investigated and analyzed. Soil bulk density increased from the second year, and also soil hardness of topsoil increased, but that of subsoil had not tendency. Average yield of sweet potato for 4years in the integrated improvement plot was 32.68ton/ha, which is increased by 59% in comparison to that of the control plot. Crop yield was in order of integrated improvement>phosphate>subsoiling>lime>compost>control plots. The soil properties of the topsoil which showed high correlation coefficient to sweet potato yield were bulk density, hardness and cation exchange capacity(CEC), and those of the subsoil were bulk density, soil moisture and CEC. Ratios of changes of soil properties except organic matter content showed high significancy to sweet potato yield. Soil physico-chemical properties of the 4th year without soil conditioners application were worse than those of 3rd year.

  • PDF

Effects of Planting Date on Growth and Yield of Bitter Gourd (Mormordica charantia L.) in Rain Shielding Plastic House (여주 비가림 재배 시 정식시기가 생육 및 수량에 미치는 영향)

  • Kim, Young Suk;Kim, Geun Hye;Yoo, Mi Bok;Go, Hung Six;Kim, Tae Soo;Kim, Chun Hwan;Seong, Ki Cheol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.71-75
    • /
    • 2016
  • The experiment was carried out to examine the effects of planting date on the growth and marketable yield of bitter gourd grown in rain-shield plastic houses. Bitter gourd cv 'Dragon' seedlings were separately transplanted during the months of June, July and August, 2015. The training method of all plants was made with four lateral vines and pinching the main vine. Lateral length of plants exhibited no significant difference between each planting date. However, bitter gourd planted in June had significantly higher main stem diameter than those treatments planted on August. The application of planting date was found effective in increasing marketable yield and number of fruits. June, as a planting date, had the highest marketable yield (6,439kg/10a), whereas bitter gourd planted in August had the lowest yield (870kg/10a) which were also consistent in terms of the number of fruits. Fruit length and diameter had no significant differences as affected by treatments. Therefore, planting date of bitter gourd in June was effective in increasing yield of fruit in rain-shield plastic house conditions.