DOI QR코드

DOI QR Code

Use of extraction solvent method to monitor the concentrations of acidic polysaccharides and ginsenosides from red and black ginseng

추출용매에 따른 홍삼 및 흑삼의 산성다당체와 진세노사이드 함량 모니터링

  • Gee Dong Lee (Department of Biofood Science and Technology, Joongbu University)
  • 이기동 (중부대학교 바이오식품학전공)
  • Received : 2023.08.22
  • Accepted : 2023.09.24
  • Published : 2023.10.30

Abstract

In this study, the extraction yield, acidic polysaccharides and ginsenosides of red and black ginseng were optimized by using the response surface methodology in consideration of the ethanol concentration and temperature of the extraction. The R2 of the model formula for the yield, acidic polysaccharides and ginsenosides was 0.8378-0.9679 (p<0.1). An optimal extraction yield of 5.29% was reached for red ginseng soluble solids when 1.52% ethanol concentration was used at a temperature of 67.27℃. Additionally, the optimal extraction yield for black ginseng soluble solid was 6.11% when 3.12% ethanol concentration was used at a temperature of 66.13℃. Furthermore, the optimal conditions for extracting acidic polysaccharides from red ginseng were using an ethanol concentration of 4.03% at a temperature of 69.61℃; a yield of 1.86 mg/mL was obtained. The optimal extraction yield for acidic polysaccharides from black ginseng was 1.80 mg/mL when extracted using a concentration of 24.67% of ethanol at a temperature of 71.14℃. An optimal extraction yield of 0.22 mg/mL was reached for ginsenoside Rg1 from red ginseng when 79.92% ethanol concentration was used at a temperature of 70.62℃. The optimal extraction yield of ginsenoside Rg3 from black ginseng was 0.31 mg/mL when ethanol was used at a concentration of 75.70% at a temperature of 65.49℃. The ideal extraction conditions for obtaining the maximum yield of both acidic polysaccharide and ginsenoside from red and black ginseng were using ethanol at a concentration between 35 and 50% at an extraction temperature of 70℃.

본 연구에서는 홍삼과 흑삼의 기능성 성분 추출 극대화를 위해 추출 용액의 ethanol 농도와 추출 온도를 고려하여 추출 수율, 산성다당체 및 ginsenosides의 함량 변화를 반응표면분석법을 통해 모니터링해 보고 적정 추출조건을 찾아보았다. 홍삼 및 흑삼의 가용성 고형분 함량에 대한 모델식의 R2는 각각 0.9679(p<0.01), 0.8545(p<0.1)였다. 홍삼가용성 고형분의 최적 추출조건은 ethanol 농도 1.52%에서 67.27℃로 추출 시 그 함량이 5.29%였으며, 흑삼 가용성 고형분의 최적 추출조건은 ethanol 농도 3.12%에서 66.13℃로 추출 시 그 함량이 6.11%였다. 홍삼 및 흑삼의 산성다당체 함량에 대한 모델식의 R2는 각각 0.9251(p<0.05), 0.88379(p<0.1)였다. 홍삼의 산성다당체 최적 추출조건은 ethanol 농도 4.03%에서 69.61℃로 추출 시 그 함량이 1.86 mg/mL였다. 흑삼의 산성다당체 최적 추출조건은 ethanol 용액 농도 24.67%에서 71.14℃로 추출 시 그 함량이 1.80 mg/mL였다. 홍삼의 ginsenoside Rg1 및 Rb1 함량에 대한 모델식의 R2는 각각 0.8941(p<0.05), 0.8718(p<0.1)이었다. 홍삼의 ginsenosides 최적 추출조건은 ethanol 농도 79.92%에서 70.62℃로 추출 시 ginsenoside Rg1 함량이 0.22 mg/mL였으며, ethanol 농도 79.94%에서 69.46℃에서 ginsenoside Rb1 함량이 0.36 mg/mL였다. 흑삼의 ginsenosides 최적 추출조건은 ethanol 농도 75.11%에서 65.21℃로 추출할 경우 ginsenoside Rb1 함량이 0.28 mg/mL였으며, ethanol 농도 75.70%에서 65.49℃에서 ginsenoside Rg3 함량이 0.31 mg/mL였다. 홍삼 및 흑삼의 산성다당체 수율과 ginsenoside 수율을 모두 만족하는 최적추출조건은 ethanol 농도 35-50%의 범위 내에서 70℃였다.

Keywords

Acknowledgement

이 논문은 2023년 중부대학교 학술연구비 지원으로 이루어진 것입니다. 이에 감사드립니다.

References

  1. Chang EJ, Park TK, Han YN, Hwang KH. Conditioning of the extraction of acidic polysaccharide from red ginseng marc. Kor J Pharmacogn, 38, 56-61 (2007)
  2. Cho CW, Kim SW, Rho J, Rhee YK, Kim K. Extraction characteristics of saponin and acidic polysaccharide based on the red ginseng particle size. J Ginseng Res, 32, 179-186 (2008) https://doi.org/10.5142/JGR.2008.32.3.179
  3. Jang JK, Jeong CM. Korean Ginseng Processing. Jungbu Publishing, Cheongju, Korea, p 214-217 (2014)
  4. Jo HK, Sung MC, Ko SK. The comparison of ginseng prosapogenin composition and contents in red and black ginseng. Kor J Pharmacogn, 42, 361-365 (2011)
  5. Kim HJ, Lee JY, You BR, Kim HR, Choi JE, Nam KY, Moon BD, Kim MR. Antioxidant activities of ethanol extracts from black ginseng prepared by steaming-drying cycles. J Korean Soc Food Sci Nutr, 40, 156-162 (2011) https://doi.org/10.3746/jkfn.2011.40.2.156
  6. Kim YS, Kang KS, Kim SI. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Arch Pharm Res, 13, 330-337 (1990) https://doi.org/10.1007/BF02858168
  7. Kim YS, Kang KS, Kim SI. Effects of ginseng component on immunotoxicity of cyclophosphamide. Korean J Ginseng, 15, 13-20 (1991)
  8. Ko GY, Kim YS, Kim HY, Na KC, Do YH, Park JD, Park JK, Park HJ, Baek NI, Lee SS, Lee JH, Lee JO, Jeong KT. Korean Ginseng. Korean Ginseng and Tobacco Research Institute, Daejeon, Korea, p 44-48 (1994)
  9. Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol, 14, 69-74 (1985) https://doi.org/10.1016/0378-8741(85)90030-3
  10. Kwak YS, Kim YS, Shin HJ, Song YB, Kyung JS, Wee JJ, Park JD. Effect of oral administration of red ginseng acidic polysaccharide (RGAP) on the tumor growth inhibition. J Ginseng Res, 29, 176-181 (2005) https://doi.org/10.5142/JGR.2005.29.4.176
  11. Kwak YS, Kim YS, Shin HJ, Song YB, Park JD. Anticancer activities by combined treatment of red ginseng acidic polysaccharide (RGAP) and anticancer agents. J Ginseng Res, 27, 47-51 (2003) https://doi.org/10.5142/JGR.2003.27.2.047
  12. Lee CK, Choi JW, Kim H, Han YN. Biological activities of acidic polysaccharide of Korean red ginseng 2: Effects on hyperlipidemia induced by alcohol. J Ginseng Res, 23, 8-12 (1999)
  13. Lee CK, Choi JW, Kim SH, Kim H, Han YN. Biological activities of acidic polysaccharide of Korean red ginseng 3: Effects on metabolizing activities in acetaminophen-treated rats. J Ginseng Res, 22, 267-273 (1998)
  14. Lee GD. Optimization of formation of the ginsenoside Rg3 in black ginseng steamed with acetic acid solution. Korean J Food Preserv, 27, 66-73 (2020) https://doi.org/10.11002/kjfp.2020.27.1.66
  15. Lee GS, Nam KY, Choi JE. Ginsenoside composition and quality characteristics of red ginseng extracts prepared with different extracting methods. Korean J Medicinal Crop Sci, 21, 276-281 (2013) https://doi.org/10.7783/KJMCS.2013.21.4.276
  16. Lee JW, Do JH. Extraction condition of acidic polysaccharide from Korean red ginseng marc. J Ginseng Res, 26, 202-205 (2002) https://doi.org/10.5142/JGR.2002.26.4.202
  17. Lee JW, Do JH. Current studies on browning reaction products and acidic polysaccharide in Korean red ginseng. J Ginseng Res, 30, 41-48 (2006) https://doi.org/10.5142/JGR.2006.30.1.041
  18. Lee YS, Chung LS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginseng isolated from Panax ginseng. Anticancer Res, 17, 323-331 (1997)
  19. Li X, Han JS, Park YJ, Kang SJ, Kim JS, Nam KY, Lee KT, Choi JE. Extracting conditions for promoting ginsenoside contents and taste of red ginseng water extract. J Crop Sci, 54, 287-293 (2009)
  20. Myers RH. Response Surface Methodology. Allyn and Bacon Inc., Boston, USA, p 127-134 (1971)
  21. Nam KY. The Latest Korean Ginseng (Ingredients and Efficacy). Korean Ginseng and Tobacco Research Institute, Daejeon, Korea, p 1-18 (1996)
  22. Nam KY, Lee NR, Moon BD, Song GY, Shin HS, Choi JE. Changes of ginsenosides and color from black ginseng prepared by steaming-drying cycles. Korean J Med Crop Sci, 20, 27-35 (2012) https://doi.org/10.7783/KJMCS.2012.20.1.027
  23. Park KM, Jeong TC, Kim YS, Shin HJ, Nam KY, Park JD. Immunomodulatory effect of acidic polysaccharide fraction from Korean red ginseng. Nat Prod Sci, 6, 31-35 (2000)
  24. Park SH. Modern Experimental Planning Method. Minyoungsa, Seoul, Korea, p 600-603 (1991)
  25. SAS. SAS/STAT: User's Guide Version 6. 4th ed, Statistical Analysis System Institute, Cary, NC, USA, p 1457-1478 (1988)