• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.029 seconds

Synthesis of Pure Butene-1 through Hydro-isomerization of Butene-2 and Distillation (2-부텐의 수첨이성화반응 및 증류공정을 통한 고순도 1-부텐의 제조)

  • Cho, Jungho;Jeon, Jong-Ki;Song, Youngha;Lee, Seong Jun;Lee, Jae Ho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.351-355
    • /
    • 2007
  • It is necessary to convert butene-2 into butene-1 with higher added-values through positional isomerization. In this study, hydro-isomerization of butene-2 with hydrogen over Pd/alumina catalysts was investigated in a fixed bed reactor. The yield of butene-1 over Ld-265 catalyst was higher than that over other catalysts. The yield of butene-1 was highest (5.3%) under the conditions of reaction temperature of $75^{\circ}C$, reaction pressure of 150 psig, 2-butene flow rate of 48 cc/h and hydrogen flow rate of 3 cc/min. We conducted simulation for the process composed of a hydro-isomerization reactor and a distillation tower. In the case of 78% of tray efficiency, we obtained over 99% pure butene-1 through a distillation tower with 171 steps (R=120).

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

Fine Granulation Characteristics of Freeze-Dried Royal Jelly (동결건조 로얄제리의 세립가공 특성)

  • Choi, In-Hag;Lee, Gee-Dong
    • Food Science and Preservation
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2013
  • A fine granule was prepared using freeze-dried royal jelly. For its preparation, which depended on operational parameters like its glucose-to-total sugar content ratio ($X_1$,0-100%), ethanol concentration ($X_2$,75-95%) and sprayed ethanol solution content ($X_3$,8-12%) using freeze-dried royal jelly, the response surface methodology was used to monitor the optimum conditions for the yield, the fragmentation rate with shaking, and the organoleptic properties. The maximum yield was 89.99% with a glucose-to-total sugar content ratio of 59.30%, an ethanol concentration of 88.64%, and a sprayed ethanol solution content of 11.83%. The minimum fragmentation rate by shaking was 0.82% at the glucose-to-total-sugar content ratio of 22.35%, the ethanol concentration of 77.21%, and the sprayed ethanol solution content of 10.59%. The sensory score for the overall palatability of the organoleptic properties was 7.45 at the glucose-to-total-sugar content ratio of 31.81%, the ethanol concentration of 93.96%, and the sprayed ethanol solution content of 10.51%.

Effect of Wood Charcoal and Pyroligneous Acid on Soil Microbiology and Growth of Red Pepper (탄화물이 토양미생물 및 고추 생육에 미치는 영향)

  • 안병준;조성택;조태수;이성재;이윤수
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.3
    • /
    • pp.49-56
    • /
    • 2003
  • As a part of agricultural utilization of charcoal and pyroligneous acid, the effect of wood carbonization products on the growth of red pepper and soil microorganisms was investigated. The treatment of charcoal and pyroligneous acid provided good growth conditions to microorganisms through neutralizing soil acidity and improving the physicochemical properties of soil. Therefore the density of useful microorganism in the soil has been increased. In the growth of red pepper, the length, diameter, and the fruit numbers of red pepper have been increased by treating with wood carbonization products. It was especially shown that yield has increased about 50% in the fruit number, by treating charcoal 1kg, 1000 time-diluted solution of pyroligneous acid and bacteria, compared with the control. It was estimated that increasing the length of seedling and the diameter of red pepper stem contributed to the resistance against the prerequisites of various environmental changes in open field. Therefore, the final yield would be increased. In the antagonism experiment of red pepper mold (Colletotrichum gloeosporioides), the mold became extinct in the 2- and 10-time diluted solution of pyroligneous acid, compared with the control. On the other hand, their growth speed was delayed in the 100- and 1000 time-diluted solution.

  • PDF

A Voltage Binning Technique Considering LVCC Margin Characteristics of Different Process Corners to Improve Power Consumption (공정 코너별 LVCC 마진 특성을 이용한 전력 소모 개선 Voltage Binning 기법)

  • Lee, Won Jun;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.122-129
    • /
    • 2014
  • Due to remarkable market growth of smart devices, higher performance and more functionalities are required for a core system-on-chip (SoC), and thus the power demand is rapidly increasing. However, aggressive shrink of CMOS transistor have brought severe process variations thereby adversely affected the performance and power consumption under strict power constraint. Voltage binning (VB) scheme is one of the effective post silicon tuning techniques, which can reduce parametric yield loss due to process variations by adjusting supply voltage. In this paper, an optimal supply voltage tuning based voltage binning technique is proposed to reduce average power without an additional yield loss. Considering the different LVCC margins of process corners along with speed and leakage characteristics, the proposed method can optimize the deviation of voltage margin and thus save power consumption. When applying on a 30nm mobile SoC product, the experimental results showed that the proposed technique reduced average power consumption up to 6.8% compared to traditional voltage binning under the same conditions.

A Study on the Properties of SM 400 for Evaluation of Structural Stability at High Temperature (고온 시의 구조내력 평가를 위한 SM 400강재의 고온 특성 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • Recently, the risk of fire outbreak is going up because of newly developed combustible materials are intended to apply more. Especially the steel framed structure can lose its load-bearing capacity when it is exposed to higher temperature condition such as a fire. So the pre-evaluation of fire resistance of the structure is very essential that the mechanical properties of yield strength and elastic modulus and thermal properties such as conductivity and linear expansion be required. To get the databases for SM 400 or welding structural steels at high temperature, various temperature conditions were used for deriving the yield strength, elastic modulus, linear expansion, and conductivity and the results were compared to those of SS 400, ordinary structural steel, respectively.

Isolation and Characterization of Feather Keratin-Degrading Bacteria and Plant Growth-Promoting Activity of Feather Hydrolysate (우모 케라틴 분해세균의 분리, 특성 및 우모 분해산물의 식물 생육촉진 효과)

  • Jeong, Jin-Ha;Lee, Na-Ri;Kim, Jeong-Do;Jeon, Young-Dong;Park, Ki-Hyun;Oh, Dong-Joo;Lee, Chung-Yeol;Son, Hong-Joo
    • Journal of Environmental Science International
    • /
    • v.19 no.10
    • /
    • pp.1307-1314
    • /
    • 2010
  • This study was conducted to isolate and characterize a novel feather-degrading bacterium producing keratinase activity. A strain K9 was isolated from soil at poultry farm and identified as Xanthomonas sp. K9 by phenotypic characters and 16S rRNA gene analysis. The cultural conditions for the keratinase production were 0.3% fructose, 0.1% gelatin, 0.04% $K_2HPO_4$, 0.06% $KH_2PO_4$, 0.05% NaCl and 0.01% $FeSO_4$ with an initial pH 8.0 at $30^{\circ}C$ and 200 rpm. In an optimized medium containing 0.1% chicken feather, production yield of keratinase was approximately 8-fold higher than the yield in basal medium. The strain K9 effectively degraded chicken feather meal (67%) and duck feather (54%), whereas human nail and human hair showed relatively low degradation rates (13-22%). Total free amino acid concentration in the cell-free supernatant was about 25.799 mg/l. Feather hydrolysate produced by the strain K9 stimulated growth of red pepper, indicating Xanthomonas sp. K9 could be not only used to increase the nutritional value of chicken feather but also a potential candidate for the development of natural fertilizer applicable to crop plant soil.

Enhancement of Saccharification Yield of Ulva pertusa Kjellman by High Pressure Homogenization Process for Bioethanol Production (구멍갈파래의 고압 균질 전처리 공정을 통한 바이오에탄올 생산용 당화수율 증진)

  • Choi, Woon-Yong;Lee, Choon-Geun;Ahn, Ju-Hee;Seo, Yong-Chang;Lee, Sang-Eun;Jung, Kyung-Hwan;Kang, Do-Hyung;Cho, Jeong-Sub;Choi, Geun-Pyo;Lee, Hyeon-Yong
    • KSBB Journal
    • /
    • v.26 no.5
    • /
    • pp.400-406
    • /
    • 2011
  • This study was investigated to improve the saccharification yield of Ulva pertusa Kjellman by the high pressure homogenization process. It was found that the high pressure homogenization pretreatment effectively destructed the cell wall structures only by using water. The high pressure homogenization process was operated under various conditions such as 10000, 20000 or 30000 psi with different recycling numbers. The optimal condition was determined as 30000 psi and 2 pass of recycling numbers and the sugar conversion yields were 16.02 (%, w/w) of glucose and 14.70 (%,w/w) of xylose, respectively. In the case of enzymatic treating the hydrolyzates with 5 FPU/glucan of celullase and 100 units/mL of amyloglucosidase, 65.8% of carbohydrates was converted into glucose. Using the hydrolysates of Ulva pertusa Kjellman, 48.7% of ethanol was obtained in the culture S.cerevisiae. These results showed that the high pressure homogenization process could efficiently hydrolyze the marine resource by using only water for bioethanol production.

Bioethanol Production using Endogenous Triticale Enzyme (라이밀 자체 효소를 이용한 바이오에탄올 생산)

  • Choi, Gi-Wook;Kim, Yule;Moon, Se-Kwon
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.504-508
    • /
    • 2008
  • The objectives of this study were to develope the economical process for bioethanol production from domestic triticale and investigate optimal fermentation conditions such as temperature, time, and enzyme concentration used to pre-treatment process. Triticale mash, containing 148 g of total sugar per 1 L of mash, was fermented with Saccharomyces cerevisiae CHY1011 at $33^{\circ}C$. Fermentation of mash supplemented with enzyme was completed within 48-60 hours, and the ethanol yield was 410.9 L/tonne of dry base. On the other hand, fermentation of mash without enzyme addition was completed within 36-48 hours, but the ethanol yield was 342.2 L/tonne of dry base. For optimal bioethanol production from triticale, viscosity reduction enzyme was added in the pre-treatment process, and the fermentation rate of triticale was 92.0-94.2%. In addition, the results showed that bioethanol production of triticale by low-temperature pre-treatment would provide higher ethanol production efficiency and lower operating costs.

Studies on the Extraction Method and Polysaccharide of Tricholoma matsutake using the Supersonic wave and Microwave (초음파와 극초단파를 이용한 송이버섯의 추출법과 다당체에 관한 연구)

  • Yu, Seung-Hyun;Chong, Myong-Soo;Kim, Hae-Ja;Lee, Ki-Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1431-1436
    • /
    • 2007
  • In order to optimize the extract condition and improve physiological activity of the extract form Tricholoma matsutake, experiments related to extraction methods, totale yield, content of total soluble polysaccharide, SOD-like activity, total polyphenol amount, and volatile flavor compound and the others were carried out, results were obtained as following: Compare with traditional hydrothermal extraction method (Hot water extraction : HWEW), it illustrates that the low temperature extraction method which combines a supersonic waves and microwave (Supersonic microwave extraction : SMEW) causes of increasing the total yield, total soluble polysaccharide. As to the anti-oxident effect, SMEW method leds to increasing of the SOD-like activity, total polyphenol amount as well. Also, cytotoxic effect and growth inhibitory effect against cancer cell line are much higher in SMEW method than HWEW method, especially SMEW5 extracts treated by supersonic 15 min. and microwave 120W, 3 min. and 2 times. The main volatile flavor compound and infinitesimal volatile flavor compound both increase significantly by SMEW method. It is concluded the main components of the volatile flavor compounds extracted from Tricholoma matsutake are 1-octen-3-0l, Methyl cinnamate, 2-octeno1 et al. alcohol typies. Consequently, SMEW5 method is considered as the most effective one for anti-oxidant and is prior to any other methods. And the optimun conditions of this method are : supersonic waves (supersonic, 25KHz, 50W) 15 minutes, microwave spectroscopy (microwave, 2,450MHz, 120W) 3 minutes, and every treatment is performed once followed twice repeats.