Bioethanol Production using Endogenous Triticale Enzyme

라이밀 자체 효소를 이용한 바이오에탄올 생산

  • Choi, Gi-Wook (CHANGHAE Institute of Cassava and Ethanol Research, CHANGHAE ETHANOL CO., LTD.) ;
  • Kim, Yule (CHANGHAE Institute of Cassava and Ethanol Research, CHANGHAE ETHANOL CO., LTD.) ;
  • Moon, Se-Kwon (CHANGHAE Institute of Cassava and Ethanol Research, CHANGHAE ETHANOL CO., LTD.)
  • 최기욱 ((주)창해에탄올 창해연구소) ;
  • 김율 ((주)창해에탄올 창해연구소) ;
  • 문세권 ((주)창해에탄올 창해연구소)
  • Published : 2008.12.31

Abstract

The objectives of this study were to develope the economical process for bioethanol production from domestic triticale and investigate optimal fermentation conditions such as temperature, time, and enzyme concentration used to pre-treatment process. Triticale mash, containing 148 g of total sugar per 1 L of mash, was fermented with Saccharomyces cerevisiae CHY1011 at $33^{\circ}C$. Fermentation of mash supplemented with enzyme was completed within 48-60 hours, and the ethanol yield was 410.9 L/tonne of dry base. On the other hand, fermentation of mash without enzyme addition was completed within 36-48 hours, but the ethanol yield was 342.2 L/tonne of dry base. For optimal bioethanol production from triticale, viscosity reduction enzyme was added in the pre-treatment process, and the fermentation rate of triticale was 92.0-94.2%. In addition, the results showed that bioethanol production of triticale by low-temperature pre-treatment would provide higher ethanol production efficiency and lower operating costs.

국내산 라이밀을 이용한 바이오에탄올 생산을 위해 저온 전처리 공정을 도입하여 에탄올 생산성을 비교하였다. 라이밀의 경우 원료 특성상 증자 공정에서 점도 문제가 발생하는데, 이를 해결하기 위해 최적 전처리 조건을 탐색하였으며 이에 따른 에탄올 생산성을 비교하였다. 저온 조건과 점도 저하 효소를 사용함으로서 점도에 따른 발효 저해 현상 해결하였고 전처리 공정에 소요되는 전처리 공정비를 절감할 수 있었다. 또한 pH 조절(pH 4.5) 후 살균 처리 없이 바로 발효가 가능함을 확인할 수 있었다. 발효 초기 총당 함량은 $48{\pm}2.0\;g/L$이었으며, 발효 72시간 이후 에탄올 생성 농도는 $67.4{\pm}1.4\;g/L$, 톤당 에탄올 생산량은 410.9 L (dry base)로 효소 무첨가구보다 에탄올 농도와 톤당 수득량이 각각 15%, 20% 이상 증가하였다. 이와 같은 결과는 기존의 에탄올생산 공정과 비교하여 전처리 공정에 소요되는 시간을 30-50% 이상 줄일 수 있으며, 저온 공정에 따른 에너지 사용 절감 및 초기 시설 투자비를 줄일 수 있어 바이오에탄올 생산을 위한 대체 원료로 충분한 가능성을 보여 주었다.

Keywords

References

  1. Bai F. W., W. A. Anderson, and M. Moo-Young (2008), Ethanol fermentation technologies from sugar and starch feedstocks, Biotechnol. Adv. 26, 89-105 https://doi.org/10.1016/j.biotechadv.2007.09.002
  2. http://www.doe.gov/bridge/ (2008)
  3. Kadam K. L. (2002), Environmental benefits on a life cycle basis of using bagasse-derived ethanol as a gasoline oxygenate in India, Energ. Policy. 30, 371-384 https://doi.org/10.1016/S0301-4215(01)00104-5
  4. Wang S., K. C. Thomas, W. M. Ingledew, K. Sosulski, and F. W. Sosulski (1999), Grain pearling and very high gravity (VHG) fermentation technologies for fuel alcohol production from rye and triticale. Process. Biochem. 34, 421-428 https://doi.org/10.1016/S0032-9592(98)00097-1
  5. Mergoum, M. (2004), Triticale improvement and production, In FAO Plant Production and Protection Paper 179, Ammar K., M. Mergoum, and S. Rajaram p1-10, FAO of The United Nations, Rome.
  6. FAO (2003), FAOstat, FAO statistical database agriculture
  7. Park, K. G. and K. M. Yoon (1995), Effect of pretreatment condition on callus formation in triticale anther culture, Korean J. Breed. 28, 39-43
  8. Kim, S. H. and H. J. Lee (1994), Growth and yield of forage crops affected by soil texture in upland diverted from paddy field, Korean J. Crop. Sci. 39, 577-584
  9. Yun, S. G., A. Kazuo, C. H. Cho, and Y. Taiki (1996), Varietal classification of spring-triticale cultivars by agronomic and feed component traits, Korean J. Breed. 28, 373-378
  10. Yun, S. G. and A. Kazuo (1998), Effect of planting dates and nitrogen fertilization rates on the forage yield and feeding value of introduced triticale, Korean J. Grassi. Sci. 18, 113-122
  11. Elza I. I., F. Flavio, and M. L. Franco (1994), Purification and partial characterization of two proteinaceous ${\alpha}$-amylase inhibitors from triticale, J. Food. Biochem. 18, 83-102 https://doi.org/10.1111/j.1745-4514.1994.tb00491.x
  12. Burgos H., B. Rosas, W. Ramirez, B. Carbonell, and M. Cinco (1999), Identification of alpha-amylase inhibitors in triticale grain, J. Sci. Food. Agric. 79, 1671-1675 https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1671::AID-JSFA418>3.0.CO;2-D
  13. http://www.novozymes.com/ (2008)
  14. Pomeranz, Y., B. A. Burkhart, and L. C. Moon (1970), Triticale in malting and brewing, In Proc. Annual Meeting, American Society Brewing Chemists, pp40-46
  15. Kolkunova, G. K., B. M. Maksimchuk, N. M. Moslova, and E. I. Vendernikova (1983), Processing triticale into flour, In Proc. 7th Cereal and Bread Cong., Elsevier, Amsterdam. pp415-418
  16. Saini, H. S. and R. J. Henry (1989), Fractionation and evaluation of triticale pentosans: comparison with wheat and rye. Cereal. Chem. 66, 11-14
  17. Sosulski, K., S. Wang, W. M. Ingledew, F. W. Sosulski, and J. Tang (1997), Preprocessed barley, rye and triticale as a feedstock for an integrated fuel ethanol-feedlot plant. Appl. Biochem. Biotech. 63-65, 59-70 https://doi.org/10.1007/BF02920412
  18. Nowak, J., K. Szambelan, H. Miettinen, W. Nowak, and Z. Czarnecki (2008), Effect of the corn grain storage method on saccharification and ethanol fermentation yield, ACTA Sci. Pol. 7, 19-27
  19. Wittrup, K. D., A. L. Weber, and P. Tsai (1993), Microencapsulation selection for isolation of yeast mutants with increased secretion of Aspergillus awamori glucoamylase, Biotechnol. Bioeng. 42, 351-356 https://doi.org/10.1002/bit.260420312