• Title/Summary/Keyword: yield conditions

Search Result 3,129, Processing Time 0.033 seconds

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T

  • Siziya, Inonge Noni;Yoon, Deok Jun;Kim, Mibang;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.892-901
    • /
    • 2022
  • The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25℃ incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.

Optimization of Extraction Process Conditions of Aga Soybean Using Response Surface methodology (반응표면분석을 이용한 아가콩의 추출조건 최적화)

  • Lee, Jin-Man;La, Im-Joung;Lee, Do-Sang;Kim, Hwa-Jung;Kim, Young-Il;Lee, Hyung-min;Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1699-1708
    • /
    • 2021
  • Response surface methodology was applied to determine the optimum extract conditions(extract temperature and time) for the high-quality Agakong beverage. The optimal roasting condition for Agakong was set at 250 ℃ for 30 minutes. As quality criteria of Agakong, pH, color values and isofavone contents with extract temperature and extract time, the probability value (p<0.01) demonstrated a high significance for the regression model. It was found that the higher the extraction temperature and the longer the extraction time, the higher the isoflavones content. The optimized conditions of extraction isoflavones from agakong were found to be optimized ratio of extraction temperature 99.5℃, extraction time 1.7 h and the maximum rutin yield was 10.63 ㎍/mL.

Change in Yield Characteristics by Transplanting Density in Major Cultivated Rice (재식밀도변화에 따른 주요 벼 품종의 수량구성요소 변화분석)

  • Woon-Ha Hwang;Hyen-Seok Lee;Seo-Yeong Yang;Chung-gun Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • We studied the changes in growth characteristics of major cultivated rice in low- density transplanting. The culm and spikelet length did not change in low density transplanting conditions. As the distance between hills increased by 10 cm, the number of tillers per hill increased by an average of 4.4 and the number of grains per spikelet increased by 7.5. The cultivar that had more tillers and higher grain number in 80 hills per 3.3 m2 tended to have more tillers and grain in low-density transplanting conditions. However, the increase rate of tillers and grain in low-density transplanting was not significanty different from the tiller and grain number in 80 hills per 3.3 m2. The total branch number and branch length in spikelets increased in low-density transplanting conditions. The grain number per spikelet was also increased by the in low-density transplanting method.

Experimental Assessment of Mesophilic and Thermophilic Batch Fermentative Biohydrogen Production from Palm Oil Mill Effluent Using Response Surface Methodology

  • Azam Akhbari;Shaliza Ibrahim;Low Chin Wen;Afifi Zainal;Noraziah Muda;Liyana Yahya;Onn Chiu Chuen;Farahin Mohd Jais;Mohamad Suffian bin Mohamad Annuar
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.278-286
    • /
    • 2023
  • The present work evaluated the production of biohydrogen under mesophilic and thermophilic conditions through dark fermentation of palm oil mill effluent (POME) in batch mode using the design of experiment methodology. Response surface methodology (RSM) was applied to investigate the influence of the two significant parameters, POME concentration as substrate (5, 12.5, and 20 g/l), and volumetric substrate to inoculum ratio (1:1, 1:1.5, and 1:2, v/v.%), with inoculum concentration of 14.3 g VSS/l. All the experiments were analyzed at 37 ℃ and 55 ℃ at an incubation time of 24 h. The highest chemical oxygen demand (COD) removal, hydrogen content (H2%), and hydrogen yield (HY) at a substrate concentration of 12.5 g COD/l and S:I ratio of 1:1.5 in mesophilic and thermophilic conditions were obtained (27.3, 24.2%), (57.92, 66.24%), and (6.43, 12.27 ml H2/g CODrem), respectively. The results show that thermophilic temperature in terms of COD removal was more effective for higher COD concentrations than for lower concentrations. Optimum parameters projected by RSM with S:I ratio of 1:1.6 and POME concentration of 14.3 g COD/l showed higher results in both temperatures. It is recognized how RSM and optimization processes can predict and affect the process performance under different operational conditions.

Statistical Optimization of Culture Conditions for Lactobacillus Strains using Response Surface Methodology (반응표면분석법을 이용한 Lactobacillus 균주 배양조건의 통계적 최적화)

  • Young Min Hwang;Hee-Seok Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.338-346
    • /
    • 2023
  • The demand for probiotic products has been steadily increasing, and Lactobacillus strains are widely used and are currently the most popular probiotics. Optimizing culture conditions for Lactobacillus production for use as probiotics will enhance their profitability by reducing production costs and time. Statistical analysis using response surface methodology revealed the following optimal sets of independent variables: 22.55 h (cultivation time), 25℃ (cultivation temperature), and 3.41% (w/w, prebiotics concentration) for Lactobacillus acidophilus; 24 h, 30.86℃, and 2% (w/w) for Lactiplantibacillus plantarum; 66.67 h, 35℃, and 3.41% (w/w) for Lacticaseibacillus rhamnosus. Actual outcomes using predicted optimal conditions for Lactobacillus strains have been confirmed to closely match predicted results. This study will provide valuable guidelines for high yield Lactobacillus production.

Analysis of Transplanting Accuracy of Rice Transplanter for Low density Planting According to Transfer Distance to Seedling Tray (소식재배용 이앙기 모판 이송간격에 따른 이앙정확도 분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.30-35
    • /
    • 2024
  • Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.

Environmental Influences on SPAD Values in Prunus mume Trees: A Comparative Study of Leaf Position and Photosynthetic Efficiency Across Different Light Conditions

  • Bo Hwan Kim;Jongbum Lee;Gyung Deok Han
    • Journal of Environmental Science International
    • /
    • v.33 no.7
    • /
    • pp.501-509
    • /
    • 2024
  • Prunus mume is a culturally significant fruit tree in East Asia that is widely used in traditional foods and medicines. The present study investigated the effects of sunlight exposure and leaf position on the photosynthetic efficiency of P. mume using SPAD values. The study was conducted at Cheongju National University of Education, Korea, under contrasting conditions between sunny (Site A) and shaded (Site B) areas on P. mume trees. Over three days, under varied weather, photosynthetic photon flux density (PPFD) and SPAD measurements were collected using a SPAD-502 plus chlorophyll meter and a smartphone PPFD meter application. The SPAD values of the 60 leaves were measured in triplicate for each tree. The results indicated that trees in sunny locations consistently exhibited higher SPAD values than those in shaded areas, implying greater photosynthetic efficiency. Moreover, leaves positioned higher in the canopy showed increased photosynthetic efficiency under different light conditions, underscoring the significance of leaf placement and light environment in photosynthetic optimization. Despite the daily sunlight variability, these factors maintained a consistent influence on SPAD values. This study concludes that optimal leaf positioning, influenced by direct sunlight exposure, significantly enhances photosynthetic efficiency in P. mume. These findings highlight the potential of integrating smart farming techniques, especially open-field smart farming technology, to improve photosynthesis and, consequently, crop yield and efficiency. The findings also highlight the need for further exploration of environmental factors affecting photosynthesis for agricultural advancement.

Delay-dependent Guaranteed Cost Control for Uncertain State-delayed Systems

  • Lee Young Sam;Kwon Oh-Kyu;Kwon Wook Hyun
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.524-532
    • /
    • 2005
  • This paper concerns delay-dependent guaranteed cost control (GCC) problem for a class of linear state-delayed systems with norm-bounded time-varying parametric uncertainties. By incorporating the free weighing matrix approach developed recently, new delay-dependent conditions for the existence of the guaranteed cost controller are presented in terms of matrix inequalities for both nominal state-delayed systems and uncertain state-delayed systems. An algorithm involving convex optimization is proposed to design a controller achieving a suboptimal guaranteed cost such that the system can be stabilized for all admissible uncertainties. Through numerical examples, it is shown that the proposed method can yield less guaranteed cost than the existing delay-dependent methods.

Exreaction of Thiosulfinates from Garlic Using Gas-in-Liquid-Dispersion

  • Lee, Won-Yiong;Bae, Dong-Ho;Park, Yong-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.2
    • /
    • pp.179-185
    • /
    • 1996
  • Extraction yields of thiosulfinates from garlic were studied by using gas-in-liquis-dispersion(GLD) system to maxmize the thiosulfinate extraction. Extracted thiosulfinates were spectrophotometically quantified using synthesized dially1 thiosulfinate. The conditions for maximum extraction were optimized by response surface methodology. The volatile components extracted by various methods, such as hexane extraction, simultaneous steam distillation and GLD system, were compared by using gas chromatography. The results indicated that the thiosulfinate yield was increased by incresaing temperature and nitrogen gas flow rate, while the effects of bubble sizes on thiosulfinate extraction were not significant at the ranges tested. Application of GLD system resulted in extraction of more volatile components than other extraction methods, Therfore, it was suggested that GLD system was one of the efficient extraction methods among the ever introduced ones, for thiosulfinate extraciton.

  • PDF

Microalgal Removal of $CO_2$from Flue Gases: Changes in Medium pH and Flue Gas Composition Do Not Appear to Affect the Photochemical Yield of Microalgal Cultures

  • Olaizola, Miguel
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.6
    • /
    • pp.360-367
    • /
    • 2003
  • Our research objectives are to determine under what conditions microalgal-based $CO_2$capture from flue gases is economically attractive. Specifically, our objective here was to select microalgae that are temperature, pH and flue gas tolerant. Microalgae were grown under five different temperatures, three different pH and five different flue gas mixtures besides 100% $CO_2$(gas concentrations that the cells were exposed to ranged 5.7-100% $CO_2$, 0-3504ppm SO$_2$, 0-328ppm NO, and 0-126ppm NO$_2$). Our results indicate that the microalgal strains tested exhibit a substantial ability to withstand a wide range of temperature (54 strains tested), pH (20 strains tested) and flue gas composition (24 strains tested) likely to be encountered in cultures used for carbon sequestration from smoke stack gases. Our results indicate that microalgal photosynthesis is a limited but viable strategy for $CO_2$capture from flue gases produced by stationary combustion sources.