• Title/Summary/Keyword: yeast fermentation

Search Result 1,114, Processing Time 0.035 seconds

Induction of Melibiase in Yeast

  • Park, Sang-Shin
    • Journal of Plant Biology
    • /
    • v.7 no.3
    • /
    • pp.1-8
    • /
    • 1964
  • Exposing yeast cells with a certain genotype to different inducers, the ability of the yeast cells (Saccharomyces cerevisiae) to obtain enhanced fermentation for carbohydrates was observed. Regardless of the preexposure to any substrate, the inherent character incapable of fermenting a certain carbohydrate was maintained, while utilization of carbohydrates by the cells with a certain gene markers was varied by the previous conditions where they were exposed. Galactose was the best inducer for the cells to elaborate melibiase, even the galactose was not utilized as a substrate. Preexposure to galactose seemed to be necessary for the cells to utilize galactose and melibiose. Galactose fermentation by GA cells was enhanced by the exposure of the cells to galactose, but not to melibiose, raffinose, sucrose or glucose. Delayed fermentation of sucrose by the cells exposed to glucose or melibiose, but not to galactose, was observed. Raffinose fermentation was obtained by the cells with either SU RAF or GA ME genes, but the enhanced fermentation of raffinose seemed to be dependent on which inducer the cells were exposed previously and enzymes induced by the inducer to break either one of the linkages of raffinose molecule, the alpha0galactosidic or the beta-fructo-furanosidic.

  • PDF

The Optimization of the Composition of Nitrogen Source in the Medium of Alcohol Fermentation of S. cerevisiae (S. cerevisiae에 의한 알콜배지에서 질소원 조성의 최적화 연구)

  • 허병기;유현주정재기
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.255-261
    • /
    • 1991
  • The effect of concentration of yeast extract and NH4Cl in the mediun of alcohol fermentation of S. cerevisiae ATCC 24858 on the fermentation characteristics, specific growth rate, sugar conversion, alcohol productivity was experimentally investigated. Regardless of initial sugar concentrations, the values of the above three characteristics increased with augument of concentration of yeast extract. However, the increasing tendency ceased above a certain concentration. The concentration of NH4Cl had little effect on the change of the three characteristics. The functional relationships between the concentration of yeast extract and the characteristics were different according to the initial sugar concentrations, but those between the ratio of yeast extract concentration to initial sugar concentration and the characteristics could be expressed as same forms respectively regardless of initial sugar concentrations. Also the values of the three characteristics approached to the maximum values around 0.085 of the ratio, but did not increase any more above 0.1 of the ratio. We have come to conclusion that the optimum ratio of the yeast extract concentration to the initial sugar concentration was about 0.085 and the ratio should not be decided as greater than 0.1 in the medium of alcohol fermentation of S. cerevisiae ATCC 24858.

  • PDF

Isolation of Ethanol-tolerant Strains of Yeast in Relation to Their Tolerant Mechanism (에탄올 내성 효모의 선별과 그의 에탄올 내성 기작)

  • 지계숙;박소영;이지나;이영하;민경희
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1991
  • The selection of ethanol-tolerant strains was applied to enrichment culture of YPD broth medium containing various concentrations of ethanol. Isolates were identified to be Saccharomyces cerevisiae, the others as S. dairensis, S. exiguus, S. telluris, Saccharomycodes ludwigii, Schwanniomyces occidentalis var. occidentalis and Zygosaccharomyces florentinus. Among isolates S. cerevisiae YO-1 was screened as having the highest ethanol tolerance and produced 18% (v/v) ethanol after 4 days fermentation. The change of fatty-acyl residues represents that a progressive decrease in fatty-acyl unsaturation and a proportional increase in saturation in phospholipids of yeast cells during fermentation affected the yeast viability. Supplementation ethanol to the cultures led to an increase of unsaturated fatty-acyl residues, especially $C_{16}$ or $C_{18}$ residues, along with a decrease in the proportion of saturated residues in cellular phospholipids. Increasing the amount of soy flour led to an increase in the maximum number of viable yeast cells and ethanol production. It was possible in 4 days to reach 21% (v/v) ethanol by adding 4% soy flour as source of unsaturated fatty-acyl residues to the fermentation medium. Soy flour not only increased yeast population but also enhanced the physiological properties of yeast cells to be ethanol tolerant in the anaerobic culture.

  • PDF

The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production

  • Park, Jae-Bum;Kim, Jin-Seong;Jang, Seung-Won;Hong, Eunsoo;Ha, Suk-Jin
    • KSBB Journal
    • /
    • v.30 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Kluyveromyces marxianus is a well-known thermotolerant yeast. Although Saccharomyces cerevisiae is the most commonly used yeast species for ethanol production, the thermotolerant K. marxianus is more suitable for simultaneous saccharification and fermentation (SSF) processes. This is because enzymatic saccharification usually requires a higher temperature than that needed for the optimum growth of S. cerevisiae. In this study, we compared the fermentation patterns of S. cerevisiae and K. marxianus under various temperatures of fermentation. The results show that at a fermentation temperature of $45^{\circ}C$, K. marxianus exhibited more than two fold higher growth rate and ethanol production rate in comparison to S. cerevisiae. For SSF using starch or corn stover as the sole carbon source by K. marxianus, the high temperature ($45^{\circ}C$) fermentations showed higher enzymatic activities and ethanol production compared to SSF at $30^{\circ}C$. These results demonstrate the potential of the thermotolerant yeast K. marxianus for SSF in the industrial production of biofuels.

Effects of Traditional Nuruk Ratio and Yeast on the Fermentation and Quality of Yakju (전통 누룩 첨가 비율과 효모가 약주의 발효 공정 및 품질에 미치는 영향)

  • Bae, Sang-Myeon;Lee, Youn-Hee;Kang, Soon-Ah;Cheong, Chul;Lee, Mee-Kyung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.1
    • /
    • pp.41-48
    • /
    • 2008
  • This study focused on the alcohol fermentability of traditional Nuruk, as well as yeast containing traditional Nuruk, in the production of Yakju. The fermentation performed with 30% Nuruk was effective with regard to alcohol yield. In addition, the fermentation containing 70% Nuruk showed the highest titratable acidity due to increased amounts of organic acids (succinic acid, oxalic acid, malic acid, acetic acid), which, however, negatively influenced the Yakju quality. Moreover, microbiological contamination always occurred in the fermentations using only Nuruk. In contrast, in the experiments with the yeast containing Nuruk, higher alcohol content and lower titrable acidity were obtained, independent of the Nuruk ratio used, positively effected the Yakju taste and flavor. Overall, the fermentation performed using the yeast containing 30% traditional Nuruk showed the best results for Yakju production.

  • PDF

Production of Sikhae Fermented Beverage using a Dextran Producing Isolate from Kimchi and Takju Yeast (김치에서 분리한 Dextran 생성균 및 탁주 효모를 이용한 식혜 발효음료 제조)

  • Hwang, Seung-Hwan;Chung, Chang-Ho
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.1
    • /
    • pp.82-87
    • /
    • 2011
  • A fermented alcoholic beverage made from Sikhae, a Korean traditional fermented rice beverage, has been developed using a dextran producing isolate from Kimchi and Takju yeast. When both of yeast and the isolate inoculated for fermented beverage production it produced around 4% (w/v) ethanol and oligosaccharides during fermentation. Inoculation of Takju yeast and the dextran producing isolate showed a similar fermentation profile with case of yeast inoculation only, but the rate of sucrose use was slower than the case of yeast only. TLC analysis showed that oligosaccharides were produced during the fermentation of Takju yeast and the isolate from Kimchi. Therefore, it is possible to produce a functional fermented beverage by modification of dextran fermentation.

Manufacturing Process of Acetic Acid Fermentation Using Deteriorated Candy (폐당(廢糖)을 이용(利用)한 초산발효법(醋酸醱酵法))

  • Kim, Hyun-Oh;Lee, Young Soon
    • Journal of Nutrition and Health
    • /
    • v.13 no.2
    • /
    • pp.104-108
    • /
    • 1980
  • The present dissertation intends to examine whether the use of deterirated candies on the market causes the acetic acid fermentation, and upon scrutiny the result is as follows. 1) 0.5% yeast extract as the sourse of nitrogen is added to 25% candy solution; as a result, the condition of alcoholic fermentation of 8.3% alcohol is favorable. 2) 0.5% yeast extract is added to candy solution after alcoholic fermentation; as a result, 0.2% increase of acidity per hour shows an active acetic acid fermentation of final 6.93%. 3) Acetic acid fermentation by the use of deteriorated candy as sugariness material makes possible up to 90% fermentation ratio through submerged aeration process, and shows 0.092% increase of acidity per hour.

  • PDF

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast

  • Agustin Krisna Wardani;Cinthya Putri Utami;Mochamad Bagus Hermanto;Aji Sutrisno;Fenty Nurtyastuti
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.184-190
    • /
    • 2023
  • Bioethanol has recently attracted much attention as a sustainable and environmentally friendly alternative energy source. This study aimed to develop a potential process for bioethanol production by fed-batch fermentation using instant dry yeast. To obtain the highest cell growth, we studied the influence of the initial sugar concentrations and pH of sugarcane molasses in batch fermentation. The batch system employed three levels of sugar concentrations, viz. 10%, 15%, 20% (w/v), and two levels of pH, 5.0 and 5.5. The highest cell growth was achieved at 20% (w/v) and pH 5.5 of molasses. The fed-batch system was then performed using the best batch fermentation conditions, with a molasses concentration of 13% (w/v) which resulted in high ethanol concentration and fermentation efficiency of 15.96% and 89%, respectively.

Impact of Fermentation Rate Changes on Potential Hydrogen Sulfide Concentrations in Wine

  • Butzke, C.E.;Park, Seung-Kook
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 2011
  • The correlation between alcoholic fermentation rate, measured as carbon dioxide ($CO_2$) evolution, and the rate of hydrogen sulfide ($H_2S$) formation during wine production was investigated. Both rates and the resulting concentration peaks in fermentor headspace $H_2S$ were directly impacted by yeast assimilable nitrogenous compounds in the grape juice. A series of model fermentations was conducted in temperature-controlled and stirred fermentors using a complex model juice with defined concentrations of ammonium ions and/or amino acids. The fermentation rate was measured indirectly by noting the weight loss of the fermentor; $H_2S$ was quantitatively trapped in realtime using a pre-calibrated $H_2S$ detection tube which was inserted into a fermentor gas relief port. Evolution rates for $CO_2$ and $H_2S$ as well as the relative ratios between them were calculated. These fermentations confirmed that total sulfide formation was strongly yeast strain-dependent, and high concentrations of yeast assimilable nitrogen did not necessarily protect against elevated $H_2S$ formation. High initial concentrations of ammonium ions via addition of diammonium phosphate (DAP) caused a higher evolution of $H_2S$ when compared with a non-supplemented but nondeficient juice. It was observed that the excess availability of a certain yeast assimilable amino acid, arginine, could result in a more sustained $CO_2$ production rate throughout the wine fermentation. The contribution of yeast assimilable amino acids from conventional commercial yeast foods to lowering of the $H_2S$ formation was marginal.