• Title/Summary/Keyword: yaw rate control

Search Result 113, Processing Time 0.024 seconds

A study on the effects of active suspension upon vehicle handling (능동 현가장치가 차량의 핸들링에 미치는 영향에 관한 연구)

  • Lee, Jung-Sup;Kwon, Hyok-Jo;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.603-610
    • /
    • 1998
  • This paper develops a 7 DOF vehicle model to study the effects of the active suspension on ride. The model is used to derive a control law for the active suspension using a full state linear optimal control technique. A wheelbase preview type active suspension is also considered in the control law derivation. The time delay between wheelbases is approximated using Pade approximation technique. The ride model is extended to a 14 DOF handling model. The 14 DOF handling model includes lateral, longitudinal, yaw and four wheel spin motions in addition to the 7 DOF ride model. A control law which is derived considering only ride related parameters is used to study the effects of the active suspension on a vehicle handling. J-turn maneuver simulation results show that the active suspension has a slower response in lateral acceleration and yaw rate, a bigger steady state lateral acceleration and an oversteer tendency. Lane changing maneuver simulation results show that the active suspension has a little bigger lateral acceleration but a much smaller roll angle and roll motion. Braking maneuver simulation results show that the active suspension has a much smaller pitch angle and pitch motion.

Simulation of Vehicle Steering Control through Differential Braking

  • Jang, Bong-Choon;Yun, Yeo-Heung;Lee, Seong-Cheol
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.3
    • /
    • pp.26-34
    • /
    • 2004
  • This paper examines the usefulness of a Brake Steer System(BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems(ITS). In order to help the car to turn, a yaw moment control was achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS was used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model was validated using the equations of motion of the vehicle. Then a controller was developed. This controller, which is a PID controller tuned by Ziegler-Nichols, is designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF

A Development of New Vehicle Model for Yaw Rate Estimation (요각속도 추정을 위한 새로운 차량 모델의 개발)

  • Bae, Sang-Woo;Shin, Moo-Hyun;Kim, Dae-Kyun;Lee, Jang-Moo;Lee, Jae-Hyung;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.565-570
    • /
    • 2001
  • Vehicle dynamics control (VDC) system requires more information on driving conditions compared with ABS and/or TCS. In order to develop the VDC system, tire slip angles, vehicle side-slip angle, and vehicle lateral velocity as well as road friction coefficient are needed. Since there are not any cheap and reliable sensors, recent researches on parameter estimation have given rise to a number of parameter estimation techniques. This paper presents new vehicle model to estimate vehicle's yaw rate. This model is improved from the conventional 2 degrees of freedom vehicle model, so-called bicycle model, taking nonlinear effects into account. These nonlinear effects are: (i) tyre nonlinearity; (ii) lateral load transfer during cornering; (iii) variable gear ratio with respect to vehicle velocity. Estimation results are validated with the experimental results.

  • PDF

Development of Integrated Dynamics Control System of SUV Vehicle with Front and Rear Steering System (SUV 차량의 전륜 및 후륜 조향 장치를 이용한 통합운동제어시스템 설계)

  • Song, Jeonghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.31-37
    • /
    • 2018
  • In order to improve stability and controllability of SUV vehicle, Integrated Dynamics Control system with Steering system (IDCS) was developed. Eight degree of freedom vehicle model and front and rear steering system model were used to design IDCS system. It also employs Fuzzy logic control method to design integrate control system. The performance of IDCS was evaluated with two road conditions and several driving conditions. The result shows that SUV vehicle with IDCS tracked the reference yaw rate under all tested conditions. IDCS reduced the body slip angle also. It represents IDCS improves vehicle stability and steerability.

Development of the Driving path Estimation Algorithm for Adaptive Cruise Control System and Advanced Emergency Braking System Using Multi-sensor Fusion (ACC/AEBS 시스템용 센서퓨전을 통한 주행경로 추정 알고리즘)

  • Lee, Dongwoo;Yi, Kyongsu;Lee, Jaewan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.28-33
    • /
    • 2011
  • This paper presents driving path estimation algorithm for adaptive cruise control system and advanced emergency braking system using multi-sensor fusion. Through data collection, yaw rate filtering based road curvature and vision sensor road curvature characteristics are analyzed. Yaw rate filtering based road curvature and vision sensor road curvature are fused into the one curvature by weighting factor which are considering characteristics of each curvature data. The proposed driving path estimation algorithm has been investigated via simulation performed on a vehicle package Carsim and Matlab/Simulink. It has been shown via simulation that the proposed driving path estimation algorithm improves primary target detection rate.

Development of an Integrated Control System between Active Front Wheel System and Active Rear Brake System (능동전륜조향장치 및 능동후륜제동장치의 통합제어기 개발)

  • Song, Jeong-Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.17-23
    • /
    • 2012
  • An integrated dynamic control (IDCF) with an active front steering system and an active rear braking system is proposed and developed in this study. A fuzzy logic controller is applied to calculate the desired additional steering angle and desired slip of the rear inner wheel. To validate IDCF system, an eight degree of freedom, nonlinear vehicle model and a sliding mode wheel slip controller are also designed. Various road conditions are used to test the performance. The results show that the yaw rate of IDCF vehicle followed the reference yaw rate and reduced the body slip angle, compared with uncontrolled vehicle. Thus, the IDCF vehicle had enhanced lateral stability and controllability.

Robust Path Tracking Control for Autonomous Underwater Vehicle with Variable Speed (변속 무인 수중 잠수정을 위한 강인 경로 추적 제어)

  • Choi, Yoon-Ho;Kim, Kyoung-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.476-482
    • /
    • 2010
  • In this paper, we propose a robust path tracking control method for autonomous underwater vehicle with variable speed. The proposed path tracking controller consists of a kinematic controller and a dynamic controller. First, the kinematic controller computes the surge speed and yaw rate to follow the reference path with variable speed. Then the dynamic controller controls the thrust force and yaw torque to move the AUV actually. In the dynamic control, we assume that the sway speed is a disturbance. In addition the dynamic controller is designed based on sliding mode conrol. We also demonstrate the stability of the proposed control method by Lyapunov stability theory. Finally, simulation results illustrate the performance of the proposed control method.

Simulation of Vehicle Steering Control through Differential Braking (차동 제동을 이용한 조향 제어 시뮬레이션)

  • 제롬살랑선네;윤여흥;장봉춘;이성철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.65-74
    • /
    • 2002
  • This paper examines the usefulness of a Brake Steer System (BSS), which uses differential brake forces for steering intervention in the context of Intelligent Transportation Systems (ITS). In order to help the car to turn, a yaw moment can be achieved by altering the left/right and front/rear brake distribution. This resulting yaw moment on the vehicle affects lateral position thereby providing a limited steering function. The steering function achieved through BSS can then be used to control lateral position in an unintended road departure system. A 8-DOF nonlinear vehicle model including STI tire model will be validated using the equations of motion of the vehicle. Then a controller will be developed. This controller, which will be a PID controller tuned by Ziegler-Nichols, will be designed to explore BSS feasibility by modifying the brake distribution through the control of the yaw rate of the vehicle.

A Preview Predictor Driver Model with Fuzzy Logic for the Evaluation of Vehicle Handling Performance (퍼지로직을 기초로한 차량 조종안정성 평가를 위한 예측 운전자 모델)

  • 김호용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.209-219
    • /
    • 1997
  • A fuzzy driver model based on a preview-predictor and yaw rate is developed. The model is used to investigate the handling performance of two wheel steering system(2WS) and four wheel steering system(4WS) vehicles. The two degree-of- freedom model which has yaw and lateral motion predicts the path of the vehicles. Based upon the yaw rate and lateral deviations, the fuzzy engine describes the human driver's complicated control behavior which is adjusted for the driving environment. Both typical single lane change maneuver and double lane change maneuver are adopted to demonstrate the feasibility of fuzzy driver model.

  • PDF