• 제목/요약/키워드: yarn strength

검색결과 108건 처리시간 0.024초

Use of Protease Produced by Bacillus sp. SJ-121 for Improvement of Dyeing Quality in Wool and Silk

  • Kim Soo-Jin;Cha Min-Kyoung;Oh Eun Taex;Kang Sang-Mo;So Jae-Seong;Kwon Yoon-Jung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권3호
    • /
    • pp.186-191
    • /
    • 2005
  • In this study, a microorganism-produced protease was used to improve the quality of fabrics. First, the protease-producing bacteria were isolated from soils, and one of them was selected and identified as Bacillus sp. SJ-121. The optimal medium composition for its growth and protease production was determined to be as follows: glucose 1g/L, soybean meal 0.5g/L, soy peptone 0.5, $K_2HPO_4\;0.2,\;MgSO_4\cdot7H_2O\; 0.002,\;NaCl\;0.002,\;and\;Na_2CO_3g/L$. Also, the optimal temperature for the production of the protease by Bacillus sp. SJ-121 was about $40^{\circ}C$ at pH 7. The wool and silk were treated with the protease from Bacillus sp. SJ-121. Following the protease treatment, changes in the surface of a single yarn of the fabrics were observed by both an optical microscope and a scanning electron microscope (SEM). Changes in the K/S value of the wool and silk were measured by spectrophotometric analysis, in order to determine the amount of dye uptake in the fabrics. We also performed a tensile strength examination in order to determine the degree and nature of mechanical changes in single yarns of the wool and silk fabrics. By increasing the protease treatment time to 48 h, the dyeing characteristics of the fabrics were enhanced, and the surfaces of the single yarns of the fabrics became smoother, due to the removal of soil and scale in them. However, no mechanical changes were detected in the fabrics. Therefore, we suggest that proper treatment of the protease produced by Bacillus sp. can improve the quality of silk and wool.

증기 전처리 및 2단 증해 시스템에 의한 닥 인피부의 펄프화 특성 (Pulping Properties of Bast Fibers of Paper Mulberry by Pre-steaming and 2-stage Cooking System)

  • 황지현;서진호;김형진
    • 펄프종이기술
    • /
    • 제45권1호
    • /
    • pp.75-82
    • /
    • 2013
  • The traditional Hanji-making was confronted with lots of industrial disadvantages and economic problems, due to the original hand-made process. Recently, the studies on the automation of overall Hanji manufacturing process is carried out by applying the commercial chemical pulping method in order to expand industrial application or efficiency of non-wood fibrous materials. However, the application of commercial pulping methods to the bast tissues of paper mulberry leads to the chemical and mechanical deterioration of cellulosic fibers. In this study, the optimal cooking method using the bast parts of paper mulberry produced by an auto-scraping device was applied to minimize the damage of fiber strength for the paper yarn manufacture. The pre-steaming treatment and alkaline pulping systems were evaluated in removal efficiency of lignin and pectin materials within the bast tissue of paper mulberry. With the application of pre-steaming treatment and 2 stage pulping system using potassium carbonate and then sodium hydroxide, kappa values were decreased two times more in lignin removal than the single stage of pulping method. It was also identified from SEM images and ATR-FTIR spectra that the pectin components within cellular structure of bast tissue were easily removed and the debarked bast parts by a auto-scraping device were easily defiberized by 2-stage pulping sequence using potassium carbonate/sodium hydroxide pulping system.

열처리 온도가 Poly(trimethylene terephthalate)(PTT) 섬유의 역학적 성질과 미세구조에 미치는 효과 (The Effects of Annealing Temperature on The Physical Properties and Fine Structure of Poly(trimethylene terephthalate)(PTT) Fibers)

  • 정경희;이언필;이재호
    • 한국의류산업학회지
    • /
    • 제15권6호
    • /
    • pp.985-992
    • /
    • 2013
  • Polytrimethylene terephthalate(PTT) offers several advantageous properties such as good tensile strength, uniformity, stiffness, toughness, UV stability, resilience, stain resistance, outstanding elastic recovery, and dyeability. The effects of annealing temperature on physical properties and the structure of PTT filaments and yarn were investigated by measuring wide-angle X-ray diffraction (WAXD), density, optical birefringence, dynamic visco elasticity, and tensile testing. The intensity of maximum tan ${\delta}$ decreased and the temperature of maximum tan ${\delta}$ shifted to a higher temperature as the annealing temperature of filaments increased; however, it shifted to a lower temperature when the annealing temperature exceeded $130^{\circ}C$. In addition, crystallinity, density and D-spacing of (010) crystal face increased as the annealing temperature increased. Optical birefringence and specific stress were almost constant up to $100^{\circ}C$ and then decreased above $130^{\circ}C$. The shrinkage of PTT filament is 0 in boiling water when annealed above $130^{\circ}C$; consequently, the use of annealed fiber above $130^{\circ}C$ can remove thermal instability when dyeing PTT fiber. In the case of yarns, the thermal stability and physical properties of yarns showed the best effect when the ply number is less than 5, twist number is less than 400tpm, and the annealing time is 20minutes.

봉제원사와 봉제방법에 따른 니트웨어의 역학적 특성 (The Effects of Sewing Thread Materials and Sewing Methods on Mechanical Properties of Knitwear)

  • 강숙녀;권진
    • 복식
    • /
    • 제57권2호
    • /
    • pp.1-10
    • /
    • 2007
  • This study aims at the improvement of sewing function through understandings of dynamic property about the sewing methods and the thread material selection in knitwear. The tensile strength and shear of KES-FB and the Instron were measured for the analysis of the mechanical properties. The knit cloth was structured In the plain stitch, $1\times1$ rib stitch and $2\times1$ rib stitch with the combination of wool and cotton. With regard to the sewing method, intralooping and interlacing were applied. For thread materials, polyester, cotton, wool and silk were used. Since silk has the lowest extension and similar values regardless of its construction in intralooping, it is available knit apparel with uniform elastic recoverv. It also has small shearing resistance. It can be used in apparel which needs big mobility, but it causes rutting problem. Therefore, it is suitable to use intralooping. When the same sewing yarn and textile are use, it can lower shearing resistance and extension in intralooping, Since wool needs a lot of extension energy and it can be cut, intralooping is more suitable than interlacing in sewing of wool. In interlacing using polyester, extension and shearing resistance are high. Therefore, it is suitable for knit sewing with high massing. Silk is not suitable for interlacing since it can be rut. Even though knit materials are different, the RT values of polyester and cotton are similar in same construction. Therefore, they can be substituted each other considering resilience after sewing.

$TiO_2$로 소광가공된 폴리에스테르 직물의 알칼리 유연가공에 관한 연구 (Alkaline Softening of $TiO_2$ Delustered Polyester Fabrics)

  • 이정순
    • 한국의류학회지
    • /
    • 제20권1호
    • /
    • pp.157-169
    • /
    • 1996
  • Polyester yarns and fabrics containing three levels of $TiO_2$ delusterant were hydrolyzed with NaOH and examined for physical and morphological changes. The mechanical propertis and hand values of alkaline hydrolyzed polyester fabrics were measured using KES-FB system. Also, the relationship between the morphology and the mechanical property of alkaline hydrolyzed polyester fabrics was analyzed. The results are as follows: 1. At an initial stage of alkaline treatment, the concentration of $TiO_2$ did not affect the weight loss of the treated yarns. But by increasing treatment time, the effect of the concentration of $TiO_2$ on the weight loss of the fiber became more pronounced. The weight loss were increased in the following order; fulldull> semidull> clear 2. The effect of hydrolysis on yarn tensile strength seems to be more related to the size of the pits on the fibers rather than the number of pits. 3. Axially oriented pits occurred along the hydroyzed, delustered fiber surfaces, while such pitting was absent on hydrolyzed fiber containing no $TiO_2$. The number of voids across the surface of a fiber increased with an increase in the amount of TiOa incorporated into the fibers. The size of the voids depended on the treatment time of hydrolysis rather than the concentration of TiOa. 4. The mechanical properties and hand values of polyester fabrics were changed by alkaline treatment but were identical regardless of the concentration of TiOa. While the mechanical properties of polyester fabrics depended on the structural change of the fibers and the yarns within the fabrics as the fiber diameter became progressively smaller rather than the size and number of pits.

  • PDF

국내·외 전투복의 카무플라주(Camouflage) 성능 연구 (A Study on Performance for Camouflage of Domestic and Foreign Combat Uniforms)

  • 강진우;이민희;홍성돈;문선정
    • 한국의류학회지
    • /
    • 제40권6호
    • /
    • pp.1025-1033
    • /
    • 2016
  • It is important to compare and analyze digital camouflage from different countries to promote the continuous development of a camouflage combat uniform. This effort should lead to developing a camouflage pattern suitable for the domestic environment and expand its performance of night camouflage. This study investigates digital camouflage by comparing camouflage fabrics sampled from Korea and eight other countries (USA, UK, Singapore, Croatia, Colombia, and Mongolia) in terms of textile, near-infrared reflectivity of colors, and color distribution. First, the fabric construction of camouflage from Korea, UK, US, Singapore, Span, and Croatia were all characterized by derivative plain weaves, while derivative twill weaves were generally used in Croatia and Mongolia. It is assumed that derivative plain weaves are adopted to improve the tearing strength of fine yarns. However, twill weaves enhance the flexibility of coarse yarn fabrics. Next, reflectivity change was analyzed based on camouflage color. The reflectivity of a combat uniform in Korea, Colombia, Croatia, and UK increased before 780nm in the visible light range, but remained consistent from 800nm which falls under the near-infrared range. In contrast, camouflage samples in Mongolia, Span, Singapore and USA showed a gradual increase of reflectivity in the near-infrared range. Finally, the color distribution analysis of digital camouflage found that camouflage of countries with desert or woodland combat settings dominantly contained brown colors. It indicates the color pattern consideration of different geographic regions is important to determine camouflage performance. This research involves basic study that will have implications for developing patterns and colors suitable for the South Korean environment and expand its use as night camouflage that helps achieve continuous improved camouflage performance.

Capillarity-Driven Self-Assembly of Silver Nanowires-Coated Fibers for Flexible and Stretchable Conductor

  • Li, Yi;Chen, Jun;Han, Xiao;Li, Yinghui;Zhang, Ziqiang;Ma, Yanwen
    • Nano
    • /
    • 제13권12호
    • /
    • pp.1850146.1-1850146.9
    • /
    • 2018
  • The rapid development of smart textiles requires the large-scale fabrication of conductive fibers. In this study, we develop a simple, scalable and low-cost capillary-driven self-assembly method to prepare conductive fibers with uniform morphology, high conductivity and good mechanical strength. Fiber-shaped flexible and stretchable conductors are obtained by coating highly conductive and flexible silver nanowires (Ag NWs) on the surfaces of yarn and PDMS fibers through evaporation-induced flow and capillary-driven self-assembly, which is proven by the in situ optical microscopic observation. The density of Ag NWs and linear resistance of the conductive fibers could be regulated by tuning the assembly cycles. A linear resistance of $1.4{\Omega}/cm$ could be achieved for the Ag NWs-coated nylon, which increases only 8% after 200 bending cycle, demonstrating high flexibility and mechanical stability. The flexible and stretchable conductive fibers have great potential for the application in wearable devices.

MRG(Mechanical Rubber Goods) 보강사 제조시스템의 건조부에서의 배기구 형상이 유동 및 온도 분포에 미치는 영향에 관한 연구 (A Study on the Effect of the Shape of the Exhaust Port on the Flow and Temperature Distribution in the Drying Part of the MRG(Mechanical Rubber Goods) Reinforcing Yarn Manufacturing System)

  • 김환국;권혜인;도규회
    • 한국염색가공학회지
    • /
    • 제34권2호
    • /
    • pp.109-116
    • /
    • 2022
  • Tire codes are made of materials such as hemp, cotton, rayon, nylon, steel, polyester, glass, and aramid are fiber reinforcement materials that go inside rubber to increase durability, driveability, and stability of vehicle tires. The reinforcement of the tire cord may construct a composite material using tires such as automobiles, trucks, aircraft, bicycles, and fibrous materials such as electric belts and hoses as reinforcement materials. Therefore, it is essential to ensure that the adhesive force between the rubber and the reinforced fiber exhibits the desired physical properties in the rubber composite material made of a rubber matrix with reinforced fibers. This study is a study on the heat treatment conditions for improving the adhesion strength of the tire cord and the reinforced fiber for tires. The core technology of the drying process is a uniform drying technology, which has a great influence on the quality of the reinforcement. Therefore, the uniform airflow distribution is determined by the geometry and operating conditions of the dryer. Therefore, this study carried out a numerical analysis of the shape of a drying nozzle for improving the performance of hot air drying in a dryer used for drying the coated reinforced fibers. In addition, the flow characteristics were examined through numerical analysis of the study on the change in the shape of the chamber affecting drying.