• Title/Summary/Keyword: y-linolenic acid

Search Result 846, Processing Time 0.026 seconds

Physiologically Active Fatty Acids their Metabolism and Function (생리활성지방산;그 대사와 기능)

  • Mitsu, Kayama
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.15-24
    • /
    • 1996
  • Essentiality was proposed in the field of lipid by Burr and Burr in 1929. When rats were raised on the fat-free diet, their growth retarded and their skin and tails showed the characteristic deficient symptoms, which were relieved by the addition of ${\omega}6(n-6)$ polyunsaturated fatty acids as linoleic(LA) and arachidonic(AA) acids to the basal diet. LA is dehydrogenated to ${\gamma}-linolenic$ acid(GLNA) by ${\Delta}6$ desaturase, then GLNA is 2 carbon chain elongated by elongase to $dihomo-{\gamma}-linolenic$ acid(DGLNA), which is desaturated by ${\Delta}5$ desaturase to AA. These acids are called LA family or ${\omega}6(n-6)$ polyunsaturated fatty acids(PUFA). ${\alpha}-Linolenic$ acid(ALNA) is converted through the series of desaturation and elongation steps to docosahexaenic acid(DHA) via eicosapentaenoic acid(EPA). These acids belong to ALNA family or ${\omega}3(n-3)$PUFA. Human who consume large amounts of EPA and DHA, which are present in fatty fish and fish oils, have increased levels of these two fatty acids in their plasma and tissue lipids at the expense of LA and AA. Alternately, vegetarians, whose intake of LA in high, have more elevated levels of LA and AA and lower levels of EPA and DHA in plasma lipids and in cell membranes than omnivores. AA and EPA are metabolized to substances called eicosanoids. Those derived form AA are known as prostanocids(prostaglandins and prostacyclins) of the 2-types and leukotrienes of the 4-series, whereas those derived from EPA are known as prostanoids of the 3-types and leukotrienes of the 5-series. DGLNA is a precursor of the 1-types of prostaglandins. The metabolites of AA and EPA have competitive functions. Ingestion of EPA from fish or fish oil replaces AA from membrane phospholipids in practically all cells. So this leads to a more physiological state characterized by the production of proatanoids and leukotrienes that have antithrombic, antichemotactic, antivasoconstrictive and antiinflammatory properties. It is evident that ${\omega}3$ fatty acids can affect a number of chronic diseases through eicosanoids alone.

Changes in Fatty Acid Composition During Partial Hydrogenation of Soybean Oil (콩기름의 수소첨가 반응시 지방산 조성의 변화)

  • Kwon, Hye-Soon;Yum, Cho-Ae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.57-63
    • /
    • 1993
  • This study investigated the reaction and variation of fatty acid composition of soybean oil when it is partially hydrogenated until its iodine value(IV) shifts from 134 to 110. Experment was conducted under he outlined reactiion conditions of temperatures(170, 190 and $210^{\circ}C$), pressure(1.3, 2.8 and 4.2atm) and nickel(Ni) catalyst concentraons(0.005, 0.01, 0.05, and 0.1%) with a fixed agitation(350rpm). Further investigation was also made to see the effect of added lecithin on hydrogenation. When reaction temperature was gradually raised and catalyst concentration increased, the content of linolenic acid progressively decreased while the increase amount of stearic acid reduced(P<0.05). On he other hand when pressure gradually increased, the contents of stearic acid and linolenic acid increased(P<0.05). Meanwhile when lecithin was added, reaction time increased by two to six times more than when no addition was made.

Molecular Strategy for Development of Value-Added Sesame Variety

  • Chung, Chung-Han
    • Proceedings of the EASDL Conference
    • /
    • 2004.10a
    • /
    • pp.13-30
    • /
    • 2004
  • There are two groups of significant functional constituents in sesame seeds on the whole; one is the vegetable oils and another is the anti-oxidative compounds. However, although high amounts of major fatty acids are synthesized in sesame seeds, their composition is unfavorable because the contents of alpha- and gamma-linolenic acid, the essential fatty acids, are very low or do not produced in sesame seeds. So, to increase these fatty acids in sesame seeds, one strategy is to overexpress their genes, ${\omega}$-3 fatty acid desaturase for alpha-linolenic acid and delta-6 fatty acid desaturase for gamma-linolenid acid, in them. Another molecular target is to enhance alpha-tocopherol, vitamin E, because its content is very low in sesame seeds. The enzyme, gamma-tocopherol methyltransferase, catalyzes the conversion of gamma-tocophero to alpha-tocopherol. Overexpression of this enzyme in sesame seeds could be also a good molecular breeding target. Reduction of phytic acid is also another molecular target in sesame seeds because phosphorus pollution may be caused by its high content in sesame seeds. Accordingly, to do so, one of target enzymes could be myo-inositol 1-phosphate synthase which is a key regulatory enzyme in the pathway of phytic aicd biosyntheses. In this lecture, a molecular strategy for development of value-added sesame crop is described in association with some results of our experiments involved in the molecular characterizations of the genes mentioned above.

  • PDF

Studies on the Lipid Metabolism of Soybean during its Germination-(Part 2) Changes on lipoxygenase activity and fatty acid composition in soybean during germination- (대두발아(大豆發芽)중 지질대사(脂質代謝)에 관한 연구-제2보(第2報) Lipoxygenase activity 및 지방산(脂肪酸)의 변화에 관하여-)

  • Shin, Hyo-Sun
    • Applied Biological Chemistry
    • /
    • v.17 no.4
    • /
    • pp.247-256
    • /
    • 1974
  • The Merit variety of soybean (Glycine max L.), harvested in 1971 was germinated in the dark at $21{\sim}25^{\circ}C$ for 10 days. The soybean sprout were divided into cotyledons and seedling axis and subjected to the determination of lipoxygenase activity and fatty acid composition of triglycerides, free fatty acids, phosholipids and crude fat fractions at two-day intervals during the germination periods. The results are summarized as follows 1) The lipoxygenase activity in cotyledons declined sharply after second day, but the activity in seedling axis inclined slightly after second day. However, the decrease of lipoxygenase activity in cotyledons coincided with decrease of linoleic and linolenic acids in cotyledons and increase of lipoxygenase activity in seedling axis coincided with increase of those acids in seedling axis. 2) The iodine value of neutral fat in cotyledons decreased continuously, but the iodine value of the neutral fat in seedling axis remained almost constant. iodine value in cotyeldons was greater than in seedling axis. 3) In the fatty acid composition of triglycerides in cotyledons, palmitic acid did not changes significantly, stearic acid increased continuously, oleic acid changed irregularly, linoleic and linolenic acids continuously decreased significantly. But in the fatty acid composition of triglycerides in seedling axis, palmitic acid remained unchanged, linoleic and linolenic acids slightly increased continuously, stearic and oleic acids changed irregularly. 4) Composition of free fatty acids in cotyledons and seedling axis changed irregularly, suggesting that all fatty acids produced by hydrolysis of triglycerides by lipase are used(or either biosynthetic Purpose or energy Production at random. 5) Fatty acids with odd-numbered carbon chain were not detected in the triglycerides and free fatty acid fractions during the germination periods, suggesting that all fatty acids are utilized as $C_2$-unit in degradation and biosynthesis. 6) The changes of fatty acids composition of Phospholipid in cotyledons and seedling axis during the germination were similar to these of triglyceride fraction.

  • PDF

Analysis of Chemical Factors Determining Taste of Soybean Sprouts (콩나물 식미 결정 성분 요인 분석)

  • Hwang, In-Taek;Lee, Kyong-Ae;Kim, Hee-Seon;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.347-352
    • /
    • 2013
  • Soybean sprout is a year-round traditional vegetable that is easily produced and relatively inexpensive in Korea. In addition, the sprout is known as a good source of protein, vitamins and minerals. The quality of the soybean sprout has been mainly evaluated only by its appearance like length, width, color, and the others without considering any odor or taste attributes. We studied the chemical factors affecting taste of soy sprouts cultivated with 5 recommended soybean cultivars through evaluation of chemical constituents in relation to their sensory characteristics. Correlation coefficient among the chemical constituents and sensory characteristics of soybean sprout showed that the linolenic acid and Ca contents were positively correlated with total acceptability of soybean sprout and histidine, aspartic acid, and serine showed a negative association with beany odor of soybean sprout. Multiple regression analysis was done to formulate selection criteria for good taste of soy sprout. The estimation of step-wise regression analysis conducted by 47 chemical components for major quality-related characteristics showed that linolenic acid and mineral contents were the main components increasing the acceptability of soybean sprout.

Analysis of Fatty Acid in Rice Bran Oil by Gas Chromatography (Gas Chromatography에 의(依)한 미강유(米糠油)의 지방산분석(脂肪酸分析))

  • Chung, T.M.;Shin, J.S.
    • Applied Biological Chemistry
    • /
    • v.9
    • /
    • pp.29-33
    • /
    • 1968
  • Through an experiment with gas chromatography carried out using diethylene glycol succinate(DEGS) as the packing material of the column, we have obtained the correction factor between the weight ratio and the peak dimension of the saturated fatty acid methyl esters of C10, C12, C14, C16, and C18 and unsaturated fatty acid methyl esters of oleic acid, linoloic acid, and linolenic acid, employing the detector of thermal conductivity type. Quantitative analysis of the fatty acids contained in rice Bran oil was performed with the above correction factor and the results are as follows; 1. Main components were found to be palmitic acid, oleic acid sand linolenic acid. No trases of capric acid (C10) lauric acid (C10) were found. 2. It was confirmed that there were straight line relation between the logarism retention time of each fatty acid and the number of carbon of saturated fatty acid or the number of double bond of other fatty acids having the same number of carbon. 3. The correction factor became larger as to the number of carbon increased up to C18 in case of saturated fatty acids, end as for other fatty acids, and as for other fatty acids of the same carbon number, it became larger according as the number of double bond increased.

  • PDF

Chemical Compositions of the Green and Ripened Pumpkin(Cucurbita moschata Duch.) (미숙호박과 완숙호박의 화학성분)

  • Cho, Gyu-Seong
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.657-662
    • /
    • 1997
  • An attempt was made to investigate the chemical compositions of green pumpkin, edible flesh and seed of ripened pumpkin (Cucurbita moschata Duch.). The proximate compositions were moisture 9.34%, 11.98%, protein 12.70%, 13.38%, lipid 11.31%, 0.85%, carbohydrate 64.32%, 62.18%, fiber 6.31%, 4.54% and ash 6.05%, 7.76% in green and ripened pumpkin, respectively. The compositions of free sugar were glucose, fructose, sucrose, lactose and maltose in green and ripened pumpkin, respectively. During flesh growth, glucose, maltose and lactose was increased but sucrose and fructose was decreased in pumpkin. Pattern of 15 amino acid compositions in green and ripened pumpkin was shown to be of similarity. Major amino acids were glutamic acid, aspartic acid and alanine in green pumpkin and edible flesh of ripened pumpkin. And major amino acid in seed of ripened pumpkin were glutamic acid, arginine, aspartic acid and leucine. The predominant fatty acids were palmitic acid, linolenic acid, linoleic acid and oleic acid in green and ripened pumpkin, respectively. And those in seed of ripened pumpkin were linoleic acid, palmitic acid and oleic acid. The richest mineral contained in the green and ripened pumpkin was shown to be K and followed by Ca, Mg, Na and Fe in order.

  • PDF

Lipid and Protein Constituents of Crotalaria juncea L.

  • Javed, Muhammad Akhtar;Saleem, Muhammad;Yamin, Muhammad;Chaudri, Tanvir Ahmad
    • Natural Product Sciences
    • /
    • v.5 no.3
    • /
    • pp.148-150
    • /
    • 1999
  • Seed lipids and proteins of Crotalaria juncea L were analyzed for fatty acids and amino acids respectively. Gas chromatographic analysis of the oil gave palmitic acid (16.01%), stearic acid (7.29%), oleic acid (14.41%), linoleic acid (54.44%) and linolenic acid (7.86%). The defatted seed cake contained all the essential amino acids except methionine and six non-essential amino acids.

  • PDF

Industrial Utilization and Function of Omega Fatty Acid and Their Content Variation in Perilla (들깨 오메가 지방산의 기능과 함량변이 및 이용)

  • Ryu Su Noh;Lee Seung Tack;Lee Jung Il;Lee Jae Hak
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.spc1
    • /
    • pp.110-122
    • /
    • 1996
  • The n-3 family fatty acids containing ${\alpha}$-linolenic acid(18:3, ALA) have been known as physiological activation materials such as inhibitory effects on the incidence of hyper-tension, coronary heart disease and cancers as well as the control of senilc dementia. Although a lot of ALA(about $63\%$) are contained in perilla oil, it has not been commercialized yet because the purification technique of the ALA has not been well established. The procedure of purification of ALA from perilla oil was saponified with 1 N-KOH /ethanol and then saturated and low level unsaturated fatty acids were removed by low-temperature crystallization method. The concentrated unsaturated fatty acids (containing about $75\%$ ALA) went down through the silver nitrate-impregnated silica column chromatography for separation of high purity of ALA. The results obtained we Fraction B, C and D contained ALA more than $85.5\%$(recovery, >$88.9\%,\;95.4\%$(recovery, >$54.4\%$) and $99.9\%$(recovery, >$31.5\%$) in purity, respectively. Seed oil content of the tested varieties were ranged from 34.8 to $54.1\%$ with $45.3\%$ of varietal means. The major omega fatty acids contained in the oil were oleic acid(n-9) $15.2\%$, linoleic acid(n-6) $13.9\%$ and linolenic acid(n-3) $63.1\%$ in the mean value. Varietal variation of n-9, 6 and 3 fatty acids ranged of $9.5\~21.4\%,\;9.1\~20.4\%$ and $50.6\~70.5\%$ respectively. Unsaturated fatty acid were averaged $92.2\%$ of seed oil in fatty acid composition. The ratios of n-6 to n-3 ranged of $0.13\~0.34\%$($0.22\%$ in mean value). The highest n-3 fatty acid variety was Yecheonjong being $70.5\%$. The lowest variety in ratios of n-6 to n-3 was Goseongjong being $0.13\%$. Oil content showed positive correlation with stearic acid and linolenic acid, while the negative correlation with oil content and linoleic acid. On the other hand, A significant negative correlation were showed between linolnic acid and the ratios n-6/n-3 fatty acid, saturated fatty acid. Saturated fatty acid was highly correlated with unsaturated fatty acid negatively being $r= -0.723^{**}$.

  • PDF