• 제목/요약/키워드: xylose reductase

검색결과 26건 처리시간 0.023초

Candida tropicalis에 의한 Xylose 와 Glucose로부터 Xylitol 생산

  • 오덕근;김상용
    • 한국미생물·생명공학회지
    • /
    • 제25권5호
    • /
    • pp.495-500
    • /
    • 1997
  • Xylitol production from xylose and glucose was investigated using Candida tropicalis KFCC-10960. As glucose concentration in xylose medium was increased, ethanol production increased. However, xylitol production was maximum at glucose concentration of 10 g/l. The concentrated cells grown on xylose or glucose were inoculated in xylose medium. The specific activities of xylose reductase and xylitol dehydrogenase, and xylitol production in concentrated cells grown on glucose were the same as those in concentrated cells grown on xylose. The results suggested that cells grown on glucose had the same xylitol producing activity as those grown on xylose. By feeding glucose in xylose medium, cell growth was achieved from glucose and xylitol production was obtained from xylose. By using this technique, a final xylitol concentration of 261 g/l was achieved from 300 g/l xylose in 41 hours which corresponded to a xylitol yield from xylose of 87% and a xylitol productivity of 6.37 g/1-h.

  • PDF

Candida parapsilosis에 의한 Xylitol 생성시 포도당의 영향

  • 오덕근;김종화
    • 한국미생물·생명공학회지
    • /
    • 제24권2호
    • /
    • pp.149-154
    • /
    • 1996
  • Effect of glucose addition to xylose medium on xylitol production was investigated by using Candida parapsilosis ATCC 21019 mutant. With increasing the ratio of glucose to xylose in total amount of 50 g/l as glucose and/or xylose, xylitol production was decreased but ethanol and glycerol production were increased. Ethanol and glycerol concentration were maxmum in 10 g/l of xylose and 40 g/l of glucose medium as 21.5 g/l and 3.6 g/l, respecti- vely. No xylitol was formed in glucose medium without xylose because xylitol could be not produced from glucose. With increasing the ratio of glucose to xylose, the activity of xylose reductase which converted xylose to xylitol were decreased. The activities of xylitol dehydrogeiiase which converted xylitol to xylulose and then cell materials were found to be constant regardless of the ratio of glucose to xylose. This results indicated that glucose addition to xylose medium on cell growth was not affected. In order to prevent the inhibitory effect of glucose on xylitol production, glucose in a fermentor was fed with low concentration and then ethanol and glycerol was critically decreased and the xylitol yield from xylose of the culture with glucose feeding was recovered the almost same as that with only 50 g/l of xylose. However, the xylitol yield from total sugars (xylose and glucose) was decreased and glucose was not contributed to xylitol production. Therefore, the fermentation at high concentration of xylose without glucose was carried out. A final xylitol concentration of 242 g/l which corresponding 80.7% of xylitol yield was obtained from 300 g/l of xylose for 273 hours.

  • PDF

Candida sp.의 Catabolite Derepressed Mutant에 의한 Xylitol 생산 (Production of Xylitol by Catabolite Derepressed Mutant of Candida sp.)

  • 한완옥;서진호;유연우
    • KSBB Journal
    • /
    • 제13권1호
    • /
    • pp.6-12
    • /
    • 1998
  • In order to produce xylitol from hemicellulose hydrolysate which is widely used as a substrate, the development of strain such as catabolite derepressed mutant is required. After treatment of Candida sp. with EMS, GM-17 and PM-34 as catabolite derepressed mutant were isolated from Candida guilliermondii and Candida parapsilosis, respectively. Mutant GM-17 and PM-34 simultaneously assimilated xylose and glucose during the fermentation. The specific xylose reductase and xylitol dehydrogenase activities of mutant strains were also higher than those of wild strains in glucose medium and mixed medium of glucose and xylose. The xylitol productivity and yield of mutant GM-17 and PM-34 were improved as compared to the wild types in the mixed medium. The xylitol productivity and yield of mutant GM-17 were 0.09 g/L·hr and 0.56 g-xylitol/g-xylose, and those of mutant PM-34 were 0.21 g/L·hr and 0.52 g-xylitol/g-xylose in the mixed medium, respectively.

  • PDF

Metabolic Engineering of Saccharomyces cerevisiae for Redox Balance of Xylose Fermentation

  • Kim, Soo Rin;Jin, Yong-Su
    • Current Research on Agriculture and Life Sciences
    • /
    • 제32권4호
    • /
    • pp.199-202
    • /
    • 2014
  • The bioconversion of cellulosic biomass hydrolyzates consisting mainly of glucose and xylose requires the use of engineered Saccharomyces cerevisiae expressing a heterologous xylose pathway. However, there is concern that a fungal xylose pathway consisting of NADPH-specific xylose reductase (XR) and $NAD^+$-specific xylitol dehydrogenase (XDH) may result in a cellular redox imbalance. However, the glycerol biosynthesis and glycerol degradation pathways of S. cerevisiae, termed here as the glycerol cycle, has the potential to balance the cofactor requirements for xylose metabolism, as it produces NADPH by consuming NADH at the expense of one mole of ATP. Therefore, this study tested if the glycerol cycle could improve the xylose metabolism of engineered S. cerevisiae by cofactor balancing, as predicted by an in-silico analysis using elementary flux mode (EFM). When the GPD1 gene, the first step of the glycerol cycle, was overexpressed in the XR/XDH-expressing S. cerevisiae, the glycerol production significantly increased, while the xylitol and ethanol yields became negligible. The reduced xylitol yield suggests that enough $NAD^+$ was supplied for XDH by the glycerol cycle. However, the GPD1 overexpression completely shifted the carbon flux from ethanol to glycerol. Thus, moderate expression of GPD1 may be necessary to achieve improved ethanol production through the cofactor balancing.

한국산 한약재 (생약) 추출물의 알도즈 환원 효소 억제 효능 검색과 꽃개오동의 수정체 혼탁 억제 (I) (Screening of Inhibitory Effect on Aldose Reductase of Korean Herbal Medicines and Preventive Effect of Catalpa bignonioides against Xylose-induced Lens Opacity (I))

  • 이윤미;김란희;김종민;김영숙;장대식;김주환;배기환;김진숙
    • 생약학회지
    • /
    • 제39권3호
    • /
    • pp.165-173
    • /
    • 2008
  • Aldose reductase (AR), the principal enzyme of the polyol pathway, has been shown to play an important role in the diabetic complications, including diabetic cataract. The inhibitors of AR, therefore, would be potential agents for prevention of diabetic complications. As part of our ongoing project directed toward the discovery of preventive and/or treatment for diabetic complications, 48 Korean herbal medicines have been investigated with an in vitro evaluation system using aldose reductase inhibitory activities. Of these, 12 herbal medicines exhibited a significant inhibitory activity against aldose reductase. Particularly, seven herbal medicines, i.e., Eurya japonica, Chrysanthemum indicum, Akebia quinata, Saururus chinensis, Catalpa bignonioides, Lonicera japonica, Vitex rotundifolia showed two times more potent inhibitory activity than the positive control 3.3-tetramethyleneglutaric acid (TMG). In addition, Catalpa bignonioides showed the retardation of cataract-opacification of the lens of the eye under diabetic condition by xylose. Therefore, this result may provide a potential therapeutic approach for preventing and treating diabetic cataracts.

A Parametric Study on Ethanol Production from Xylose by Pichia stipitis

  • Lee Tae-Young;Kim Myoung-Dong;Kim Kyu-Yong;Park Kyungmoon;Ryu Yeon-Woo;Seo Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제5권1호
    • /
    • pp.27-31
    • /
    • 2000
  • Characteristics of ethanol production by a xylose-fermenting yeast, Pichia stipitis Y-7124, were studied. The sugar consumption rate and specific growth rate were higher in the glucose-containing medium than in the xylose-containing medium. Specific activities of xylose reductase and xylitol dehydrogenase were higher in the medium with xylose than glucose, suggesting their induction by xylose. Maximum specific growth rate and ethanol yield were achieved at 30 g xylose/L concentration without formation of by-products such as xylitol and acetic acid whereas a maximum ethanol concentration was obtained at 130 g/L xylose. Adding a respiratory inhibitor, rotenone, increased a maximum ethanol concentration by $10\%$ compared with the control experiment. In order to evaluate the pattern of ethanol inhibition on specific growth rate, a kinetic model based on Luong's equations was applied. The relationship between ethanol concentration and specific growth rate was hyperbolic for glucose and parabolic for xylose. A maximum ethanol concentration at which cells did not grow was 33.6 g/L for glucose and 44.7 g/L for xylose.

  • PDF

Specific Expression Patterns of xyl1, xyl2, and xyl3 in Response to Different Sugars in Pichia stipitis

  • Han, Ji-Hye;Park, Ju-Yong;Kang, Hyun-Woo;Choi, Gi-Wook;Chung, Bong-Woo;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.946-949
    • /
    • 2010
  • The effects of two different sugars (glucose and xylose) on the expression levels and patterns of the xylose reductase (xyl1), xylitol dehydrogenase (xyl2), and xylulokinase (xyl3) genes were analyzed using Pichia stipitis. A significant increase in mRNA levels of xyl1 was observed after 6 h growth in culture conditions using xylose as a sole carbon source, but expressions of the three genes were not influenced by normal culture media with glucose. In addition, expressions of xyl2 and xyl3 were not observed during the entire culture period during which xylose was added. It also was found that the expression level of xyl1 increased as a function of the xylose concentration (40, 60, and 80 g/l) used in this study, indicating that xyl1 expression sensitively responded to xylose in the culture media. Although the induced level of xyl2 increased slightly after 48 h in the xylose-supplemented culture conditions, the expression of xyl2 was not observed in the xylitol-supplemented culture conditions. Finally, considering the expression of each gene in response to glucose or xylose, the absolute expression levels of the three genes indicate that xyl1 is induced primarily by exposure to xylose.

누룩으로부터 자일리톨 생산능이 있는 내열성 효모 Millerozyma farinosa 균주의 분리 (Isolation of Xylitol-Producing Thermotolerant Yeast Millerozyma farinosa from Nuruk)

  • 정은혜;배영우;권세영;박은희;김명동
    • 한국미생물·생명공학회지
    • /
    • 제47권4호
    • /
    • pp.530-535
    • /
    • 2019
  • 누룩으로부터 자일로즈를 탄소원으로 이용할 수 있는 내열성이 우수한 효모 균주를 분리하고 46℃에서 비성장속도가 우수한 MBY/L1597 균주를 선발하였으며, 해당 균주는 Millerozyma farinosa로 동정되었다. 대조구인 M. farinosa KCTC27412(=CBS7064) 균주는 46℃에서 자일로스 환원효소의 활성이 나타나지 않았고 균체도 성장하지 않았다. 그러나 M. farinosa MBY/L1597 균주는 46℃에서 NADPH를 보조인자로 사용한 경우 4.98 ± 0.49 U/mg protein의 효소활성을 나타냈다. M. farinosa MBY/L1597 균주는 46℃에서 20 g/l의 자일로즈를 이용하여 9.87 ± 1.00 g/l의 자일리톨을 생산하여 약 50%의 수율을 나타내었고 한국미생물자원센터에 KCTC27797 균주로 기탁하였다.

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao;Xu, Yan;Hu, Qing Sen;Xiao, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2009
  • Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.