• Title/Summary/Keyword: xylanases

Search Result 63, Processing Time 0.021 seconds

Comparative Characterization of Xylanases from Two Bacillus Strains (두 종류 Bacillus속 균주의 Xylanases 특성 비교)

  • Jin, Hyun Kyung;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.370-375
    • /
    • 2016
  • Two xylanase genes were cloned into Escherichia coli from Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated as mannanase producer from home-made doenjang, respectively, and their nucleotide sequences were determined. Both xylanase genes consisted of 642 nucleotides, encoding polypeptides of 213 amino acid residues. The deduced amino acid sequences of the YB-1401 and YB-1402 xylanase, designated Xyn1401 and Xyn1402, differed from each other by single amino acid residue, Asn for Xyn1401 and Lys for Xyn1402, corresponding to amino acid position of 127. Their amino acid sequences were highly homologous to those of xylanases belonging to the glycosyl hydrolase family 11. The 28 amino acid stretch in the N-terminus of both enzymes was predicted as signal peptide by SignalP4.1 server. Both xylanases were localized at the level of 91−94% in culture filtrate of the recombinant E. coli cells, suggesting they were secreted efficiently in E. coli cells. The optimal reaction conditions were 50℃ and pH 6.0 for Xyn1401, and 55℃ and pH 6.5 for Xyn1402, respectively, indicating one amino acid difference from each other affected pH and temperature profiles of their activities. In addition, their thermostabilities were somewhat different from each other.

Selection of Multienzyme Complex-Producing Bacteria Under Aerobic Cultivation

  • Pason Patthra;Chon Gil-Hyong;Ratanakhanokchai Khanok;Kyu Khin Lay;Jhee Ok-Hwa;Kang Ju-Seop;Kim Won-Ho;Choi Kyung-Min;Park Gil-Soon;Lee Jin-Sang;Park Hyun;Rho Min-Suk;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1269-1275
    • /
    • 2006
  • The selection of multienzyme complex-producing bacteria under aerobic condition was conducted for improving the degradation of lignocellulosic substances. The criteria for selection were cellulase and xylanase enzyme production, the presence of cellulose-binding domains and/or xylan-binding domains in enzymes to bind to insoluble substances, the adhesion of bacterial cells to insoluble substances, and the production of multiple cellulases and xylanases in a form of a high molecular weight complex. Among the six Bacillus strains, isolated from various sources and deposited in our laboratory, Paenibacillus curdlanolyticus B-6 strain was the best producer of cellulase and xylanase enzymes, which have both cellulose-binding factors (CBFs) and xylan-binding factors (XBFs). Moreover, multiple carboxymethyl cellulases (CMCases) and xylanases were produced by the strain B-6. The zymograms analysis showed at least 9 types of xylanases and 6 types of CMCases associated in a protein band of xylanase and cellulase with high molecular weight. These cells also enabled to adhere to both avicel and insoluble xylan, which were analyzed by scanning electron microscopy. The results indicated that the strain B-6 produced the multienzyme complex, which may be cellulosome or xylanosome. Thus, P. curdlanolyticus B-6 was selected to study the role and interaction between the enzymes and their substrates and the cooperation of multiple enzymes to enhance the hydrolysis due to the complex structure for efficient cellulases and xylanases degradation of insoluble polysaccharides.

Overproduction, Purification, and Characterization of Bacillus stearothermophilus Endo-xylanase A (XynA)

  • Cho, Ssang Goo;Jung Han Suh;Yong Jin Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 1996
  • By using a T7 expression system, a large amount of Bacillus stearothermophilus endo-xylanase A (XynA) could be produced in Escherichia coli cells. The overproduced enzyme formed inclusion bodies, and so the protein could be more easily purified to homogeneity. The molecular weight of the purified enzyme was estimated to be 22 kDa by SDS-polyacrylamide gel electrophoresis and 43 kDa by Sephacryl S-200 gel filtration, suggesting that the native enzyme was a homodimer. The pI value was determined to be 8.4. The Michaelis constants for birchwood xylan and oat spelts xylan were calculated to be 3.83 mg/ml and 5.03 mg/ml, respectively, and the $V_{max}$ max/ values for both xylans were 2.86 $\mu mole$/min. The purified enzyme was most active at $55^{\circ}C$ and pH 8.0, and stable up to $60^{\circ}C$ and in the near neutral pH range. From the zymogram, Bacillus stearothermophilus was found to have at least three xylanases and the purified one was the smallest among them.

  • PDF

Nucleotide Sequence Analysis of an Endo-Xylanase Gene (xynA) from Bacillus stearothermophilus

  • Cho, Ssang-Goo;Choi, Yong-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.3
    • /
    • pp.117-124
    • /
    • 1995
  • A gene (xynA) encoding the endo-xylanase (E.C.3.2.1.8) from Bacillus stearothermophilus was cloned in E. coli, and its complete nucleotide sequence was determined. The xynA gene consists of a 636 base pairs open reading frame coding for a protein of 212 amino acids with a deduced molecular weight of 23, 283 Da. A putative signal sequence of 27 amino acid residues shows the features comparable with the Bacillus signal sequences; namely, the signal contains a positively charged region close to the N-terminus followed by a long hydrophobic string. The coding sequence is preceded by a possible ribosome binding site with a free energy value of -16.6 kcal/mol and the transcription initiation signals are located further upstream. The translation termination codon (TAA) at the 3 end of the coding sequence is followed by two palindrome sequences, one of which is thought to act as a terminator. The xynA gene has a high GC content, especially in the wobble position of codons (64%). Comparison of the primary protein sequence with those of other xylanases shows a high homology to the xylanases belonging to family G.

  • PDF

Sequence Analysis and Expression of Xylanase Gene (xynY) from Alkalophilic Bacillus sp. YC-335

  • Park, Young-Seo;Yum, Do-Young;Kim, Jin-Man;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.224-231
    • /
    • 1993
  • The nucleotide sequence of the xylanase gene (xynY) from alkalophilic Bacillus sp. YC-335 was determined and analyzed. An open reading frame of 1, 062 base pairs for xynY gene was observed and encoded for a protein of 354 amino acids with a molecular weight of 38, 915. S1 nuclease mapping showed that the transcription initiation sites of the xynY gene were different in Bacillus sp. YC-335 and Escherichia coli HB101 (pYS55). S1 mapping also showed that -10 region of the xynY gene recognized by RNA polymerases of E. coli and Bacillus sp. YC-335 were TACAGT and TATGAT , respectively. A ribosome binding site sequence with the free energy of -17.0 Kcal/mol was observed 9 base pairs upstream from the unusual initiation codon, TTG. The proposed signal sequence consisted of 27 amino acids, 2 of which were basic amino acid residues and 21 were hydrophobic amino acid residues. When the amino acid sequences of xylanases were compared, Bacillus sp. YC-335 xylanase showed more than 50% homology with xylanases from B. pumilus, B. subtilis, and B. circulans.

  • PDF

Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake

  • Huang, Xiaoyun;Lin, Juan;Ye, Xiuyun;Wang, Guozeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.662-671
    • /
    • 2015
  • To enrich the genetic resource of microbial xylanases with high activity and stability under alkaline conditions, a xylanase gene (xynSL4) was cloned from Planococcus sp. SL4, an alkaline xylanase-producing strain isolated from the sediment of soda lake Dabusu. Deduced XynSL4 consists of a putative signal peptide of 29 residues and a catalytic domain (30-380 residues) of glycosyl hydrolase family 10, and shares the highest identity of 77% with a hypothetical protein from Planomicrobium glaciei CHR43. Phylogenetic analysis indicated that deduced XynSL4 is closely related with thermophilic and alkaline xylanases from Geobacillus and Bacillus species. The gene xynSL4 was expressed heterologously in Escherichia coli and the recombinant enzyme showed some superior properties. Purified recombinant XynSL4 (rXynSL4) was highly active and stable over the neutral and alkaline pH range from 6 to 11, with maximum activity at pH 7 and more than 60% activity at pH 11. It had an apparent temperature optimum of 70℃ and retained stable at this temperature in the presence of substrate. rXynSL4 was highly halotolerant, retaining more than 55% activity with 0.25-3.0 M NaCl and was stable at the concentration of NaCl up to 4M. The enzyme activity was significantly enhanced by β-mercaptoethanol and Ca2+ but strongly inhibited by heavy-metal ions and SDS. This thermophilic and alkaline- and salt-tolerant enzyme has great potential for basic research and industrial applications.

Characterization of an Extracellular Xylanase in Paenibacillus sp. HY-8 Isolated from an Herbivorous Longicorn Beetle

  • Heo, Sun-Yeon;Kwak, Jang-Yul;Oh, Hyun-Woo;Park, Doo-Sang;Bae, Kyung-Sook;Shin, Dong-Ha;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1753-1759
    • /
    • 2006
  • Paenibacillus sp. HY-8 isolated from the digestive tracts of the longicorn beetle, Moechotypa diphysis, produced an extracellular endoxylanase with a molecular weight of 20 kDa estimated by SDS-PAGE. The xylanase was purified to near electrophoretic homogeneity from the culture supernatant after ammonium sulfate precipitation, gel filtration, and ionexchange chromatography. The purified xylanase exhibited the highest activities at pH 6.0 and $50^{\circ}C$. The $K_m\;and\;V_{max}$ values were 7.2 mg/ml and 16.3 U/mg, respectively, for birchwood xylan as the substrate. Nucleotide sequence of the PCR-cloned gene was determined to have the open reading frame encoding a polypeptide of 212 amino acids. The N-terminal amino acid sequence and the nucleotide sequence analyses predicted that the precursor xylanase contained a signal peptide composed of 28 amino acids and a catalytically active 19.9-kDa peptide fragment. The deduced amino acid sequence shared extensive similarity with those of the glycoside hydrolase family 11 of xylanases from other bacteria. The predicted amino acid sequence contained two glutamate residues, previously identified as essential and conserved for active sites in other xylanases of the glycoside hydrolase family 11.

Purification and Characterization of Two Endoxylanases from an Alkaliphilic Bacillus halodurans C-1

  • Tachaapaikoon Chakrit;Lee Yun-Sik;Rantanakhanokchai Khanok;Pinitglang Surapong;Kyu Khin Lay;Rho Min-Suk;Lee Si-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.613-618
    • /
    • 2006
  • Two endoxylanases from an alkaliphilic bacterium, Bacillus halodurans C-1, were purified 3.8- and 7.9- fold with specific activities of 9.4 and 19.8U/mg protein, respectively. The molecular masses of both purified enzymes were 23 and 47 kDa, respectively, and 23 kDa xylanase I (Xyl I) exhibited an optimum pH at 7.0, whereas 47 kDa xylanase II (Xyl II) showed a broad pH range of 5.0 to 9.0. The temperature optima of both xylanases were $60^{\circ}C\;and\;70^{\circ}C$, respectively. Both were stable in the pH range of 6.0 to 9.0 and 5.0 to 10.0, respectively, and they were stable up to $60^{\circ}C\;and\;70^{\circ}C$, respectively. The $K_m\;and\;V_{max}$ of Xyl I were 4.33mg/ml and $63.5{\mu}mol/min/mg$, respectively, whereas Xyl II had a $K_m$ value of 0.30 mg/ml and $V_{max}$ of $210{\mu}mol/min/mg$. Both xylanases hydrolyzed xylans from birchwood, oat spelt, and larchwood. However, they showed different modes of action; a series of xylooligosaccharides larger than xylotriose were released as the major products by Xyl I, whereas xylobiose and xylotriose were the main products by Xyl II. The maximum synergistic action of the two enzymes on hydrolysis of xylan was 2.16 with the ratio of Xyl I to Xyl II at 1:9.

Novel Endoxylanases of the Moderately Thermophilic Polysaccharide-Degrading Bacterium Melioribacter roseus

  • Rakitin, Andrey L.;Ermakova, Alexandra Y.;Ravin, Nikolai V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1476-1484
    • /
    • 2015
  • Three endoxylanase-encoding genes from the moderately themophilic chemoorganotrophic bacterium Melioribacter roseus were cloned and expressed in Escherichia coli. Genes xyl2091 (Mros_2091) and xyl2495 (Mros_2495) encode GH10 family hydrolases, whereas xyl2090 (Mros_2090) represents the GH30 family. In addition to catalytic domains, Xyl2090 and Xyl2091 contain carbohydrate-binding modules that could facilitate their binding to xylans and Por sorting domains associated with the sorting of proteins from the periplasm to the outer membrane, where they are covalently attached. Recombinant endoxylanase Xyl2495 exhibited a high specific activity of 1,920 U/mg on birchwood xylan at 40℃. It is active at low temperatures, exhibiting more than 30% of the maximal activity even at 0℃. Endoxylanases Xyl2090 and Xyl2091 have lower specific activities but higher temperature optima at 80℃ and 65℃, respectively. Analysis of xylan hydrolysis products revealed that Xyl2090 generates xylo-oligosaccharides longer than xylopentaose. Xylose and xylobiose are the major products of xylan hydrolysis by the recombinant Xyl2091 and Xyl2495. No activity against cellulose was observed for all enzymes. The presence of three xylanases ensures efficient xylan hydrolysis by M. roseus. The highly processive "free" endoxylanase Xyl2495 could hydrolyze xylan under moderate temperatures. Xylan hydrolysis at elevated temperatures could be accomplished by concerted action of two cell-bound xylanases; Xyl2090 that probably degrades xylans to long xylo-oligosaccharides, and Xyl2091 hydrolyzing them to xylose and xylobiose. The new endoxylanases could be useful for saccharification of lignocellulosic biomass in biofuels production, bleaching of paper pulp, and obtaining low molecular weight xylooligosaccharides.

Studies on Hemicellulase System in Aspergillus niger ( I ) - Purification and reconstitution of D-xylanase - (Aspergillus niger의 Hemicellulase계 효소에 관한 연구-D-xylanase계 효소의 정제와 재조합)

  • Park, Yang-Do;Lee, Hee-Jong;Moon H. Han
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.1
    • /
    • pp.23-32
    • /
    • 1983
  • In the present study, two kinds of D-xylanases (1, 4-$\beta$-D-xylan xylanohydrolase (EC 3.2.1.8) were purified and characterized from crude extract of Aspergillus niger KG79. Xylanase I was most active at pH 5.0, whereas xylanse II at pH 4.0 Both enzymes demonstrated their maximum activity at 45$^{\circ}C$. They were relatively stable between pH 4.0 and 6.0 at 3$0^{\circ}C$ for 6 hours. Molecular weight of xylanse I and II were 12, 500 and 11, 500, respectively. Michaelis-Menten constants of xylanse I and II were 0.28% and 0.26% of xylan, respectively. Both enzymes could degrade commercial D-xylan to xylose, xylobiose, and xylotriose to the degree of about 10% of total reducing power. Xylanse I could, however, liberate arabinose from barley straw xylan in addition to xylose and xylooligasaccharides more rapidly than xylanase II. The degree of hydrolysis was about 25%. The reconstituted D-xylanase system with purified xylanases and $\beta$-xylosidase degraded commercial xylan and barley straw xylan to the degree of 28% and 54% respectively. The limit of hydrolysis by the enzymes was suggested to be resulted from the physical structure of the substrate.

  • PDF