• Title/Summary/Keyword: xenon arc lamp

Search Result 25, Processing Time 0.029 seconds

COMPARISON OF THE DECREE OF CONVERSION IN LIGHT-CURED COMPOSITE RESIN CURED BY HALOGEN AND PLASMA XENON ARC LAMP CURING UNIT (Halogen lamp 광조사기와 Plasma xenon arc lamp 광조사기에 의한 광중합 복합레진의 중합률 비교)

  • Lee, Young-Jun;Jeong, Byung-Cho;Choi, Nam-Ki;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.3
    • /
    • pp.328-336
    • /
    • 2002
  • Recently, new light curing unit utilizing the plasma xenon arc lamp is introduced. This curing unit is operated at relatively high intensity, so shortening the curing time significantly. The aim of this experiment was to estimate curing capability of plasma xenon arc lamp curing unit compared to traditional halogen lamp curing unit. Degree of conversion was evaluated by Raman spectroscopy after irradiation of specimens with halogen lamp curing unit(Optilux 150, Demetron, USA) for 20s, 40s, 60s and plasma xenon arc lamp curing unit(flipo, Lokki, France) for 2s, 3s, 6s. The results showed that strong light intensity of plasma xenon arc lamp curing unit did not compensate for short exposure time completely. So, Multi-layered curing within 2mm thickness and additional exposure time is recommanded when light-cured composite resin is polymerized with plasma xenon arc lamp curing unit.

  • PDF

A Study on the Improved Lightfastness Test Method for Military Textile Products (군용 섬유제품의 일광견뢰도 시험방법 개선에 대한 연구)

  • Hong, Seongdon;Kim, Byoungsoon;Jeon, Youngmin;Lee, Jung-Soon
    • Textile Coloration and Finishing
    • /
    • v.27 no.4
    • /
    • pp.288-300
    • /
    • 2015
  • This study was executed to substitute Carbon-arc method, which is a method currently used for testing light-fastness of military textile products, with Xenon arc method. Specimens used in the study were classified according to the fabric material and color of military textile products and were composed of 11 items of 42 kinds with different colors. Light-fatness test was done by comparing the result of Carbon-arc(KS K 0700) and Xenon arc(KS K ISO 105-B02) method. In Xenon arc method, blue wool reference materials of 1~8 was used, and exposure condition preferred in American continent and light exposure method 3 were applied. After testing with both methods, grade of light-fastness, color difference, reflectance and color were examined. Even though there was a slight difference among 42 specimens used in the test, results exceeded the quality standard both in Carbon-arc-lamp and Xenon arc-lamp. Therefore, it was confirmed that applying KS K ISO 105-B02 together in the KS K 0700-regulated Ministry of National Defense standard and purchase order would also fit.

Research about Hyperspectral Imaging System for Pre-Clinical testing of Small Animal (소형동물 전임상실험을 위한 하이퍼스펙트럼 영상장비 연구)

  • Lee, kyeong-Hee;Choi, Young-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2208-2213
    • /
    • 2007
  • In this study we have developed a hyperspectrum imaging system for highly sensitive and effective imaging analysis. An optical setup was designed using acoustic optical tunable filter (AOTF) for high sensitive hyperspectrum imaging. Light emitted by mercury lamp gets split in to diffracted and undiffracted beams while passing though AOTF. GFP transfected HEK-293 cell line was used as a model for in vitro imaging analysis. Cells were first, analyzed by fluorescence microscope followed by flow cytometric analysis. Flow cytometric analysis showed 66.31% transfection yield in GFP transfected HEK-293 cells. Various images of GFP transfected HEK-293 cell were grabbed by collecting the diffracted light using a CCD over a dynamic range of frequency of 129-171 MHz with an interval of 3 MHz. Subsequently, for in vivo image analysis of GFP transfected cells in mouse, a whole-body-imaging system was constructed. The blue light of 488 nm wavelength was obtained from a Xenon arc lamp using an appropriate filter and transmitted through an optical cable to a ring illuminator. To check the efficacy of the newly developed whole-body-imaging system, a comparative imaging analysis was performed on a normal mouse in presence and absence of Xenon arc irradiation. The developed hyperspectrum imaging analysis with AOTF showed the highest intensity of green fluorescent protein at 153 MHz of frequency and 494 nm of wavelength. However, the fluorescence intensity remained same as that of the background below 138 MHz (475 nm) and above 162 MHz (532 nm). The mouse images captured using the constructed whole-body-imaging system appeared monochromatic in absence of Xenon arc irradiation and blue when irradiated with Xenon arc lamp. Nevertheless, in either case mouse images appeared clearly.

Accelerated Weathering Behavior of XLPE (가교폴리에틸렌의 촉진 내후성)

  • Lee, Chul Ho;Kim, Sang Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.722-730
    • /
    • 1994
  • The effects of antioxidant and carbon black on weatherability of crosslinked polythylene(XLPE) for electrical insulation were investigated. 16 compositions were prepared in other to determine the weathering resistance. Samples were exposed in xenon-arc lamp Weather-Ometer for 500, 1000, 1500, 2000 hours respectively. Tensile strength, elongation at break, dielectric strength and tan ${\delta}$ were measured to evaluate the weatherability of XLPE. The results indicated that the effect of carbon black was more prominent than antioxidant and synergistic effect, was observed when two additives were mixed.

  • PDF

Measurement of a temperature and components of arc plasma with a spectroscopic method (분광법을 이용한 아크 플라즈마의 온도 및 성분 측정)

  • Jeong, Young-Woo;Lee, Sang-Youb;Park, Hong-Tae;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1840-1842
    • /
    • 2003
  • This paper describes an experiment of detecting a temperature and components of arc plasma of electrical circuit breaker with a spectroscopic system. The system includes an optical fiber, a monochromator which has three gratings from low to high resolution and ICCD of which time resolution is 50 ns. This system enables measuring a temperature and components of arc plasma of a circuit breaker which is generated and extinguished in a few ms. We use a Planck's law and Boltzmann Plot method for calculating a temperature of arc plasma. A Xenon lamp is used for calibrating the system and this is very important for calculating a temperature of arc plasma. In this study, Arc plasma of Ag and Cu contact was investigated and these represent the contact of low voltage and extra-ultra high voltage circuit breaker, respectively. 8 $kA_{rms}$ test current was applied with a capacitor bank.

  • PDF

Control of the Photo-induced Discoloration of the Handmade Korean Paper with Polyethylene Glycol (Polyethylene Glycol에 의한 수록한지(手漉韓紙)의 광(光) 변색(變色) 억제(抑制))

  • Cheon, Cheol;Park, Soo-Ahn
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.2
    • /
    • pp.161-166
    • /
    • 2000
  • Classified handmade Korean paper which has been commonly used as the material for the paper cultural assets divide into four classes. We irradiated xenon arc lamp, which has almost the same spectrum distribution as natural sunlight, to test photo-induced of discoloration according to PEG molecular weight and concentration. So, we reach the followings. 1) Unbleached handmade Korean paper with PEG showed rapid decrease of brightness for 10 hours after photo-irradiation, regardless of molecular weight of PEG, but, after 10 hours, it showed gradual increase of brightness. From this, it proved that there was an effect of preventing discoloration of photo-irradiation. 2) Chemical bleached handmade Korean paper showed increase of brightness after 20 hours. Though time was delayed in increase of brightness, there was also an effect of preventing discoloration of photo-irradiation in chemical bleached paper. 3) Handmade Korean paper made with abet-mosk showed the lowest of brightness when it was tested on 400-20% PEG. Before photo-irradiation, the brightness of paper, applied it, was the lowest, but it showed the least difference of brightness after photo-irradiation. From this, it proved that there was the greatest effect of preventing discoloration in this paper. 4) Preventing yellowish, the first phenomena by photo-irradiation ageing with applying PEG was proved that there was the decrease of value of $b^*$ +, and increase value of $L^*$, which could fairly prevent decrease of brightness.

  • PDF

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

The Influence of Weathering Conditions on the Outer Membrane of Biogas with Plasticized PVC : A Study using Non-destructive Tests

  • Kim, Changhwan;Ki, Wootae;Kim, SangMyung;Shin, Jinyong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • The biogas holder is composed of an outer membrane and an inner membrane which are subject to outdoor exposure and gas exposure respectively. The influence of weathering conditions on the photo-degradation of a biogas holder was investigated. Tests were performed under three different methods - outdoor exposure tests (Seosan, Arizona), accelerated tests (Xenon-are lamp) with the outer-membrane of biogas. Moreover, the changes in the aging process were monitored using color difference, gloss, the contact angle and an optical microscope. Changes in physical properties, such as decrease reduction in gloss, decrease in the contact angle, increase in color difference were observed in the aging process. The comparison between membrane 3B, 4B and membrane 5B under xenon-arc were discussed. Membrane 5B was very sensitive to ultraviolet (UV) ray. There were many difficulties in the outdoor exposure test due to acid rain, dust, and stain resistance.

Photodegradation of Cellulosics(Part II) - Chemical Properties of Irradiated Cotton - (Cellulose의 광분해에 관한 연구(II) - 광조사된 면섬유의 화학적 성질을 중심으로 -)

  • 전경숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.1
    • /
    • pp.15-22
    • /
    • 1994
  • The formation of carbonyl group was dominant to other functional groups. Concentrations of both carboxyl and peroxide groups were found to rapidly reach low steady state values that increased slightly with increa-sing temperature and relatice humidity. Since the deg-radation of cellulose samples was in the initial stage and the conversion of glycosidic bonds and hydroxyl groups were very small, it was found that changes in the physical and chemical properties could be fitted to a first-order reaction model.

  • PDF

Solar Steam Reforming of Methane utilizing Solar Simulator (Solar Simulator를 이용한 메탄의 수증기 개질 반응)

  • Do, Han-Bin;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.186-189
    • /
    • 2008
  • Solar simulator를 이용한 메탄의 수증기 개질은 집광된 태양에너지를 이용하기 위한 목적으로 수행되었다. 본 연구에서는 이와 같은 태양열에너지의 화학적 축열을 실시하기 위해 Solar Simulator를 이용한 메탄의 수증기 개질을 연구하였다. 태양열 모사 램프로 1.2kW급 Xenon-arc lamp를 사용하였다. 반응기는 앞면의 Quartz Window와 촉매지지층으로 구성되어 있다. 램프의 빛은 Quartz Window를 통하여 촉매층에 직접적으로 방사되고, 방사된 빛으로 촉매지지층에서 흡열반응이 일어난다.메탄의 수증기개질 반응은 고온에서 일어나기 때문에 촉매지지체를 열에 강한 SiC로 만들어진 Ceramic foam을 사용하였다. 이 촉매지지체에 촉매를 Wash-coat하여 사용하였으며, 담지된 촉매는 Ni을 활성성분으로 하는 ICI 46-6을 사용하였다. 반응기는 318 SUS 재질로 제작되었으며, 반응기 외부는 Insulation을 하여 열손실을 감소시켰다. 실험은 온도와 공간속도에 따른 Solar Steam reforming의 반응특성을 분석하였다.

  • PDF