• 제목/요약/키워드: x-ray microtomography

검색결과 51건 처리시간 0.019초

Evaluation of mesial root canal configuration of mandibular first molars using micro-computed tomography

  • Salli, Gulay Altan;Egil, Edibe
    • Imaging Science in Dentistry
    • /
    • 제51권4호
    • /
    • pp.383-388
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the root canal morphology of mesial roots of mandibular first molars. Materials and Methods: Forty extracted mandibular first molars were used in this study. The morphological examination of root canals was conducted in accordance with the Vertucci classification using micro-computed tomography (micro-CT). Any aberrant root canal configurations not included in the Vertucci classification were recorded, and their frequency was established using descriptive statistics. Intra-observer reliability was assessed using the Wilcoxon signed-rank test, while inter-observer reliability was assessed using the Cohen kappa test. Significance was evaluated at the P<0.05 level. Results: The mesial roots of mandibular first molars had canal configurations of type I (15%), type II (7.5%), type III (25%), type IV (10%), type V (2.5%), type VI (7.5%), and type VII (7.5%). The images showed 10 (25%) additional configuration types that were not included in the Vertucci classification. These types were 1-3-2-3, 1-2-3-2-3, 2-3-1, 2-3, 1-2-3-1, 2-1-2-3, 3-2-1, 1-2-3-1, 2-3-2-3, and 1-2-1-2-1. The intra-observer differences were not statistically significant(P>0.05) and the kappa value for inter-observer agreement was found to be 0.957. Conclusion: Frequent variations were detected in mesial roots of mandibular first molars. Clinicians should take into consideration the complex structure of the root canal morphology before commencing root canal treatment procedures to prevent iatrogenic complications. Micro-CT was a highly suitable method to provide accurate 3-dimensional visualizations of root canal morphology.

Micro-computed tomography in preventive and restorative dental research: A review

  • Ghavami-Lahiji, Mehrsima;Davalloo, Reza Tayefeh;Tajziehchi, Gelareh;Shams, Paria
    • Imaging Science in Dentistry
    • /
    • 제51권4호
    • /
    • pp.341-350
    • /
    • 2021
  • Purpose: The use of micro-computed tomography (micro-CT) scans in biomedical and dental research is growing rapidly. This study aimed to explore the scientific literature on approaches and applications of micro-CT in restorative dentistry. Materials and Methods: An electronic search of publications from January 2009 to March 2021 was conducted using ScienceDirect, PubMed, and Google Scholar. The search included only English-language articles. Therefore, only studies that addressed recent advances and the potential uses of micro-CT in restorative and preventive dentistry were selected. Results: Micro-CT is a tool that enables 3-dimensional imaging on a small scale with very high resolution. In this method, there is no need for sample preparation or slicing. Therefore, it is possible to examine the internal structure of tissue and the internal adaptation of materials to surfaces without destroying them. Due to these advantages, micro-CT has been recommended as a standard imaging tool in dental research for many applications such as tissue engineering, endodontics, restorative dentistry, and research on the mineral density of hard tissues and bone growth. However, the high costs of micro-CT, the time necessary for scanning and reconstruction, computer expertise requirements, and the enormous volume of information are drawbacks. Conclusion: The potential of micro-CT as an emerging, accurate, non-destructive approach is clear, and the valuable research findings reported in the literature provide an impetus for researchers to perform future studies focusing on employing this method in dental research.

A 2-plane micro-computed tomographic alveolar bone measurement approach in mice

  • Catunda, Raisa Queiroz;Ho, Karen Ka-Yan;Patel, Srushti;Febbraio, Maria
    • Imaging Science in Dentistry
    • /
    • 제51권4호
    • /
    • pp.389-398
    • /
    • 2021
  • Purpose: This study introduces a standardized 2-plane approach using 8 landmarks to assess alveolar bone levels in mice using micro-computed tomography. Materials and Methods: Bone level differences were described as distance from the cemento-enamel junction (CEJ) to alveolar bone crest (ABC) and as percentages of vertical bone height and vertical bone loss, comparing mice infected with Porphyromonas gingivalis (Pg) to controls. Eight measurements were obtained per tooth: 2 in the sagittal plane (mesial and distal) and 6 in the coronal plane (mesiobuccal, middle-buccal, distobuccal, mesiolingual, middle-lingual, and distolingual). Results: Significant differences in the CEJ-to-ABC distance between Pg-infected mice and controls were found in the coronal plane (middle-lingual, mesiobuccal, and distolingual for the first molar; and mesiobuccal, middle-buccal, and distolingual for the second molar). In the sagittal plane, the distal measurement of the second molar was different. The middle-buccal, mesiobuccal, and distolingual sites of the first and second molars showed vertical bone loss relative to controls; the second molar middle-lingual site was also different. In the sagittal plane, the mesial sites of the first and second molars and the distal site of the second molar showed loss. Significantly different vertical bone height percentages were found for the mesial and distal sites of the second molar (sagittal plane) and the middle-lingual and distolingual sites of the first molar(coronal plane). Conclusion: A reliable, standardized technique for linear periodontal assessments in mice is described. Alveolar bone loss occurred mostly on the lingual surface of the coronal plane, which is often omitted in studies.

A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis

  • Oziunas, Rimantas;Sakalauskiene, Jurgina;Jegelevicius, Darius;Januzis, Gintaras
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권2호
    • /
    • pp.70-77
    • /
    • 2022
  • PURPOSE. This study evaluated screw loosening and 3D crown displacement after cyclic loading of implant-supported incisor crowns cemented with original titanium bases or with three compatible, nonoriginal components. MATERIALS AND METHODS. A total of 32 dental implants were divided into four groups (n = 8 each): Group 1 used original titanium bases, while Groups 2-4 used compatible components. The reverse torque value (RTV) was evaluated prior to and after cyclic loading (1,200,000 cycles). Samples (prior to and after cyclic loading) were scanned with a microcomputed tomography (micro-CT). Preload and postload files were superimposed by 3D inspection software, and 3D crown displacement analysis was performed using root-mean-square (RMS) values. All datasets were analyzed using one-way ANOVA and Tukey's post hoc analysis. RESULTS. Significant variations were observed in the postload RTV, depending on the titanium base brand (P < .001). The mean postload RTVs were significantly higher in Groups 1 and 2 than in the other study groups. While evaluating 3D crown displacement, the lowest mean RMS value was shown in the original Group 1, with the highest RMS value occurring in Group 4. CONCLUSION. Within the limitations of this in vitro study and under the implemented conditions, it was concluded that the manufacturer brand of the titanium base significantly influenced screw loosening following the fatigue test and influenced 3D crown displacement after cyclic loading.

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • 제52권3호
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Temporal changes of periodontal tissue pathology in a periodontitis animal model

  • Hyunpil Yoon;Bo Hyun Jung;Ki-Yeon Yoo;Jong-Bin Lee;Heung-Sik Um;Beom-Seok Chang;Jae-Kwan Lee
    • Journal of Periodontal and Implant Science
    • /
    • 제53권4호
    • /
    • pp.248-258
    • /
    • 2023
  • Purpose: This study aimed to characterize the early stages of periodontal disease and determine the optimal period for its evaluation in a mouse model. The association between the duration of ligation and its effect on the dentogingival area in mice was evaluated using micro-computed tomography (CT) and histological analysis. Methods: Ninety mice were allocated to an untreated control group or a ligation group in which periodontitis was induced by a 6-0 silk ligation around the left second maxillary molar. Mice were sacrificed at 1, 2, 3, 4, 5, 8, 11, and 14 days after ligature placement. Alveolar bone destruction was evaluated using micro-CT. Histological analysis was performed to assess the immune-inflammatory processes in the periodontal tissue. Results: No significant difference in alveolar bone loss was found compared to the control group until day 3 after ligature placement, and a gradual increase in alveolar bone loss was observed from 4 to 8 days following ligature placement. No significant between-group differences were observed after 8 days. The histological analysis demonstrated that the inflammatory response was evident from day 4. Conclusions: Our findings in a mouse model provide experimental evidence that ligature-induced periodontitis models offer a consistent progression of disease with marginal attachment down-growth, inflammatory infiltration, and alveolar bone loss.

A micro-computed tomographic study using a novel test model to assess the filling ability and volumetric changes of bioceramic root repair materials

  • Fernanda Ferrari Esteves Torres;Jader Camilo Pinto;Gabriella Oliveira Figueira;Juliane Maria Guerreiro-Tanomaru;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • 제46권1호
    • /
    • pp.2.1-2.8
    • /
    • 2021
  • Objectives: New premixed bioceramic root repair materials require moisture for setting. Using micro-computed tomography (micro-CT), this study evaluated the filling ability and volumetric changes of calcium silicate-based repair materials (mineral trioxide aggregate repair high-plasticity [MTA HP] and Bio-C Repair, Angelus), in comparison with a zinc oxide and eugenol-based material (intermediate restorative material [IRM]; Dentsply DeTrey). Materials and Methods: Gypsum models with cavities 3 mm deep and 1 mm in diameter were manufactured and scanned using micro-CT (SkyScan 1272. Bruker). The cavities were filled with the cements and scanned again to evaluate their filling capacity. Another scan was performed after immersing the samples in distilled water for 7 days to assess the volumetric changes of the cements. The statistical significance of differences in the data was evaluated using analysis of variance and the Tukey test with a 5% significance level. Results: Bio-C Repair had a greater filling ability than MTA HP (p < 0.05). IRM was similar to Bio-C and MTA HP (p > 0.05). MTA HP presented the largest volumetric change (p < 0.05), showing more volume loss than Bio-C and IRM, which were similar (p > 0.05). Conclusions: Bio-C Repair is a new endodontic material with excellent filling capacity and low volumetric change. The gypsum model proposed for evaluating filling ability and volumetric changes by micro-CT had appropriate and reproducible results. This model may enhance the physicochemical evaluation of premixed bioceramic materials, which need moisture for setting.

Combination of a new ultrasonic tip with rotary systems for the preparation of flattened root canals

  • Karina Ines Medina Carita Tavares ;Jader Camilo Pinto ;Airton Oliveira Santos-Junior ;Fernanda Ferrari Esteves Torres ;Juliane Maria Guerreiro-Tanomaru ;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.56.1-56.11
    • /
    • 2021
  • Objectives: This study evaluated 2 nickel-titanium rotary systems and a complementary protocol with an ultrasonic tip and a small-diameter instrument in flattened root canals. Materials and Methods: Thirty-two human maxillary second premolars with flattened canals (buccolingual diameter ≥4 times larger than the mesiodistal diameter) at 9 mm from the radiographic apex were selected. The root canals were prepared by ProDesign Logic (PDL) 30/0.01 and 30/0.05 or Hyflex EDM (HEDM) 10/0.05 and 25/0.08 (n = 16), followed by application of the Flatsonic ultrasonic tip in the cervical and middle thirds and a PDL 25/0.03 file in the apical third (FPDL). The teeth were scanned using micro-computed tomography before and after the procedures. The percentage of volume increase, debris, and uninstrumented surface area were analyzed using the Kruskal-Wallis, Dunn, Wilcoxon, analysis of variance/Tukey, and paired and unpaired t-tests (α = 0.05). Results: No significant difference was found in the volume increase and uninstrumented surface area between PDL and HEDM (p > 0.05). PDL had a higher percentage of debris than HEDM in the middle and apical thirds (p < 0.05). The FPDL protocol resulted in less debris and uninstrumented surface area for PDL and HEDM (p < 0.05). This protocol, with HEDM, reduced debris in the middle and apical thirds and uninstrumented surface area in the apical third (p < 0.05). Conclusions: High percentages of debris and uninstrumented surface area were observed after preparation of flattened root canals. The HEDM, Flatsonic tip, and 25/0.03 instrument protocol enhanced cleaning in flattened root canals.

Porosity and pore size distribution in high-viscosity and conventional glass ionomer cements: a micro-computed tomography study

  • Aline Borburema Neves ;Laisa Inara Gracindo Lopes;Tamiris Gomes Bergstrom;Aline Saddock Sa da Silva ;Ricardo Tadeu Lopes ;Aline de Almeida Neves
    • Restorative Dentistry and Endodontics
    • /
    • 제46권4호
    • /
    • pp.57.1-57.9
    • /
    • 2021
  • Objectives: This study aimed to compare and evaluate the porosity and pore size distribution of high-viscosity glass ionomer cements (HVGICs) and conventional glass ionomer cements (GICs) using micro-computed tomography (micro-CT). Materials and Methods: Forty cylindrical specimens (n = 10) were produced in standardized molds using HVGICs and conventional GICs (Ketac Molar Easymix, Vitro Molar, MaxxionR, and Riva Self-Cure). The specimens were prepared according to ISO 9917-1 standards, scanned in a high-energy micro-CT device, and reconstructed using specific parameters. After reconstruction, segmentation procedures, and image analysis, total porosity and pore size distribution were obtained for specimens in each group. After checking the normality of the data distribution, the Kruskal-Wallis test followed by the Student-Newman-Keuls test was used to detect differences in porosity among the experimental groups with a 5% significance level. Results: Ketac Molar Easymix showed statistically significantly lower total porosity (0.15%) than MaxxionR (0.62%), Riva (0.42%), and Vitro Molar (0.57%). The pore size in all experimental cements was within the small-size range (< 0.01 mm3), but Vitro Molar showed statistically significantly more pores/defects with a larger size (> 0.01 mm3). Conclusions: Major differences in porosity and pore size were identified among the evaluated GICs. Among these, the Ketac Molar Easymix HVGIC showed the lowest porosity and void size.

How do imaging protocols affect the assessment of root-end fillings?

  • Fernanda Ferrari Esteves Torres;Reinhilde Jacobs;Mostafa EzEldeen;Karla de Faria-Vasconcelos;Juliane Maria Guerreiro-Tanomaru;Bernardo Camargo dos Santos;Mario Tanomaru-Filho
    • Restorative Dentistry and Endodontics
    • /
    • 제47권1호
    • /
    • pp.2.1-2.11
    • /
    • 2022
  • Objectives: This study investigated the impact of micro-computed tomography (micro-CT)-based voxel size on the analysis of material/dentin interface voids and thickness of different endodontic cements. Materials and Methods: Following root-end resection and apical preparation, maxillary premolars were filled with mineral trioxide aggregate (MTA), Biodentine, and intermediate restorative material (IRM) (n = 24). The samples were scanned using micro-CT (SkyScan 1272; Bruker) and the cement/dentin interface and thickness of materials were evaluated at voxel sizes of 5, 10, and 20 ㎛. Analysis of variance and the Tukey test were conducted, and the degree of agreement between different voxel sizes was evaluated using the Bland and Altman method (p < 0.05). Results: All materials showed an increase in thickness from 5 to 10 and 20 ㎛ (p < 0.05). When evaluating the interface voids, materials were similar at 5 ㎛ (p > 0.05), while at 10 and 20 ㎛ Biodentine showed the lowest percentage of voids (p < 0.05). A decrease in the interface voids was observed for MTA and IRM at 20 ㎛, while Biodentine showed differences among all voxel sizes (p < 0.05). The Bland-Altman plots for comparisons among voxel sizes showed the largest deviations when comparing images between 5 and 20 ㎛. Conclusions: Voxel size had an impact on the micro-CT evaluation of thickness and interface voids of endodontic materials. All cements exhibited an increase in thickness and a decrease in the void percentage as the voxel size increased, especially when evaluating images at 20 ㎛.