• 제목/요약/키워드: x-ray diffraction(XRD)

검색결과 2,647건 처리시간 0.028초

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

졸겔법으로 제작된 Al-doped ZnO 박막의 Aluminum Chloride 농도에 따른 구조적 및 광학적 특성 (Effects of Aluminum Chloride Concentrations on Structural and Optical Properties of Al-doped ZnO Thin Films Prepared by the Sol-Gel Method)

  • 조관식;김민수;임광국;이재용;임재영
    • 대한금속재료학회지
    • /
    • 제50권11호
    • /
    • pp.847-854
    • /
    • 2012
  • Al-doped ZnO (AZO) thin films were grown on quartz substrates by the sol-gel method. The effects of the Al mole fraction on the structural and optical properties of the AZO thin films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-VIS spectroscopy. The particle size of the AZO thin films decreased with an increase in Al concentrations. The optical parameters, the optical band gap, absorption coefficient, refractive index, dispersion parameter, and optical conductivity, were studied in order to investigate the effects of Al concentration on the optical properties of AZO thin films. The dispersion energy, single-oscillator energy, average oscillator wavelength, average oscillator strength, and refractive index at an infinite wavelength of the AZO thin films were affected by the Al incorporation. The optical conductivity of the AZO thin films also increased with increasing photon energy.

Preparation and Electrical Properties of Manganese-incorporated Neodymium Oxide System

  • Jong Sik Park;Keu Hong Kim;Chul Hyun Yo;Sung Han Lee
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권9호
    • /
    • pp.713-718
    • /
    • 1994
  • Manganese-incorporated neodymium oxide systems with a variety of Mn mol% were prepared to investigate the effect of doping on the electrical properties of neodymium oxide. XRD, XPS, SEM, DSC, and TG techniques were used to analyze the specimens. The systems containing 2, 5, 8, and 10 mol% Mn were found to be solid solutions by X-ray diffraction analysis and the lattice parameters were obtained for the single-phase hexagonal structure by the Nelson-Riley method. The lattice parameters, a and c, decreased with increasing Mn mol%. Scanning electron photomicrographs of the specimens showed that the grain size decreased with increasing Mn mol%. The curves of log conductivity plotted as a function of 1/T in the temperature range from 500 to 1000$^{\circ}C$ at $PO_2$'s of $10^{-5}$ to $10^{-1}$ atm for the specimens were divided into high-and low-temperature regions with inflection points near 820-890$^{\circ}C$. The activation energies obtained from the slopes were 0.53-0.87 eV for low-temperature region and 1.40-1.91 eV for high-temperature region. The electrical conductivities increased with increasing Mn mol% and $PO_2$, indicating that all the specimens were p-type semiconductors. At $PO_2$'s below $10^{-3}$ atm, the electrical conductivity was affected by the chemisorption of oxygen molecule in the temperature range of 660 to 850$^{\circ}C$. It is suggested that electron holes generated by oxygen incorporation into the oxide are charge carriers for the electrical conduction in the high-temperature region and the system includes ionic conduction owing to the diffusion of oxygen atoms in the low-temperature region.

바이오매스 유래 이소소르비드를 이용한 폴리우레탄-우레아의 제조 및 특성 비교 (Preparation and Comparison the Physical Properties of Polyurethane-Urea Using Biomass Derived Isosorbide)

  • 박지현;박종승;최필준;고재왕;이재년;서석훈
    • 한국염색가공학회지
    • /
    • 제31권3호
    • /
    • pp.165-176
    • /
    • 2019
  • Polyurethane-ureas(PUUs) were prepared from 4,4'-methylenebis(cyclohexyl isocyanate) and various diols including isosorbide. Isosorbide is starch-derived monomer that exhibit a wide range of glass transition temperature and are therefore able to be used in many applications. PUU was synthesized by a pre-polymer polymerization using a catalyst. Successful synthesis of the PUU was characterized by fourier transform-infrared spectroscopy. Thermal properties were determined by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. It was found that by tuning isosorbide content in the resin, their glass transition temperature(Tg) slightly decreased. Physical properties were also determined by tensile strength and X-ray diffraction. There is no significant differences between petroleum-derived diol and isosorbide in XRD analysis. Moreover, their physical and optical properties were determined. The result showed that the poly(tetramethylene ether glycol)/isosorbide-based PUU exhibited enhanced tensile strength, transmittance, transparency and biodegradability compared to the existing diols. After 11 weeks composting, the biodegradability of blends increased in ISB-PUU. The morphology of the fractured surface of blend films were investigated by scanning electron microscopy.

Physicochemical properties of different phases of titanium dioxide nanoparticles

  • Dong, Vu Phuong;Yoo, Hoon
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.105-110
    • /
    • 2021
  • The physicochemical properties of crystalline titanium dioxide nanoparticles (TiO2 NPs) were investigated by comparing amorphous (amTiO2), anatase (aTiO2), metaphase of anatase-rutile (arTiO2), and rutile (rTiO2) NPs, which were prepared at various calcination temperatures (100℃, 400℃, 600℃, and 900℃). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed that the phase-transformed TiO2 had the characteristic features of crystallinity and average size. The surface chemical properties of the crystalline phases were different in the spectral analysis. As anatase transformed to the rutile phase, the band of the hydroxyl group at 3,600-3,100 cm-1 decreased gradually, as assessed using Fourier transform infrared spectroscopy (FT-IR). For ultraviolet-visible (UV-Vis) spectra, the maximum absorbance of anatase TiO2 NPs at 309 nm was blue-shifted to 290 nm at the rutile phase with reduced absorbance. Under the electric field of capillary electrophoresis (CE), TiO2 NPs in anatase migrated and detected as a broaden peak, whereas the rutile NPs did not. In addition, anatase showed the highest photocatalytic activity in an UV-irradiated dye degradation assay in the following order: aTiO2 > arTiO2 > rTiO2. Overall, the phases of TiO2 NPs showed characteristic physicochemical properties regarding size, surface chemical properties, UV absorbance, CE migration, and photocatalytic activity.

기계·화학 처리 자기치유 혼화재가 포함된 모르타르의 성능평가 (Performance Evaluation of Mortar Containing Mechanochemical Treated Self-Healing Admixtures)

  • 박동철;권혁;이정우;황무연;김태형
    • 한국건설순환자원학회논문집
    • /
    • 제9권3호
    • /
    • pp.367-374
    • /
    • 2021
  • 본 연구는 기계·화학적 에너지를 활용하는 메카노케미칼 공정기술을 자기치유 혼화재에 적용하기 위한 목적으로 진행되었다. 기계·화학적 공정기술을 자기치유 혼화재 제조 공정에 적용하여 치유 소재의 활성화 에너지를 증가시켜 치유성능에 미치는 영향을 확인하고자 하였다. 자기치유 모르타르에 사용한 자기치유 소재는 팽창/팽윤제를 주요 구성물로 선정하고 탄산염 촉진제와 무기염 첨가제를 기타 첨가제로 혼입하였으며, 기계·화학 처리공정 적용에 의한 치유 소재의 활성화도 및 개질화 반응이 가능한 재료로 선택하였다. 기계·화학 처리공정에 대한 자기치유 혼화재의 기초평가는 XRD, FT-IR 분석으로 확인하였으며, 자기치유 모르타르의 치유 성능평가는 정수위 투수시험을 이용하여 치유율을 확인하였다. 치유성능 확인결과 기계·화학 처리 공정을 적용한 WM3 시료(MC360min)가 공정처리 하지 않은 WM1 시료에 대비 치유성능이 4.1% 증가하였으며, 자기치유율은 평균 94.3%로 확인되었다.

ZnO2 박막 제조 시간의 증가에 따라 박막 입자 성장면과 입자 성장 방향에 관한 연구 (As ZnO2 Thin Film Manufacturing Time Increases, the Thin Film Particle Growth Plane and a Study on the Direction of Particle Growth)

  • 정진
    • 통합자연과학논문집
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2021
  • 라디오 진동수 스퍼터를 이용하여 실리콘(110) 기판위에 증착시간을 60분, 120분 그리고 180을 변화시켜서 산화아연 박막을 만들었다. ZnO2 박막의 입자 성장면을 X선 회절 장치를 써서 분석한 결과 박막의 주 성장면(002)면과 (103)면의 방향이 증착 시간의 영향을 많이 받았다. 전자 주사 현미경을 통하여 ZnO2박막의 입자 성장을 관찰 한 결과 ZnO2박막이 증착 초기에는 성장이 정체되는 인큐베이션 시간이 필요하다가 일정 시간이 지나면 다시 입자 성장이 일어나는 현상이 관찰 되었다. ZnO2박막의 화학 분석을 한 결과는 증착 시간의 증가가 ZnO2박막내의 산소의 양과는 변화가 없었지만 Zn의 성분에 변화가 관찰 되어서 박막의 증착 시간이 박막내의 Zn성분에는 영향을 미침을 알 수 있었다.

La2O3-CaF2-Al2O3-SiO2 계 oxy-fluoride 결정화 유리의 광 발광 특성 (Photoluminescence properties of oxy-fluoride glass-ceramics of La2O3-CaF2-Al2O3-SiO2 system)

  • 하태완;강승구
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.84-88
    • /
    • 2021
  • 레이저, 광학센서 등에 사용되고 있는 La2O3-CaF2-Al2O3-SiO2 계 유리에 희토류 물질을 첨가하였을 때, 열처리 온도에 따른 결정화유리의 발광 특성 변화에 대하여 연구하였다. 결정화유리를 얻기 위한 열처리 조건은 비등온 열분석을 통해 얻었으며, 열처리 온도에 따른 결정성장 정도 및 생성된 결정상 종류를 파악하기 위해 XRD 분석을 진행하였다. Scherrer's equation을 이용한 결과, 결정화유리 내부에 25~40 nm 크기의 결정들이 생성된 것으로 계산되었다. Photoluminescence (PL) 분석결과, 660~670℃에서 1시간 열처리 된 시편이 가장 우수한 PL 강도를 보였으며, CIE 색좌표계 분석결과, 열처리 유무와 관계없이 모든 결정화유리 시편들은 red-orange 빛을 발광하는 것으로 나타났다.

Hydroxyapatite prepared from eggshell and mulberry leaf extract by precipitation method

  • Wu, Shih-Ching;Hsu, Hsueh-Chuan;Hsu, Shih-Kuang;Liu, Mei-Yi;Ho, Wen-Fu
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제4권1호
    • /
    • pp.21-32
    • /
    • 2019
  • Eggshell is a waste material after the usage of egg. In this work, biowaste chicken eggshells were used for preparing carbonated hydroxyapatite (HA) nanoparticles of high purity through aqueous precipitation method at room temperature. The eggshell-derived HA will be a cost-effective bioceramics for biomedical applications and an effective material-recycling technology. Additionally, mulberry leaf extract was used as a template to regulate the morphology, size and crystallinity of HA, and the effects of pH value were also examined. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) was used to determine the size, shape and morphology of HA. The results indicate that only one phase of HA were synthesized in the both absence and presence of mulberry leaf extract at pH of 7 and above, while DCPD or DCPA/DCPD phase was observed at pH 4 condition. The crystallite sizes of the HA samples obviously decreased when adding mulberry leaf extract as a template, while they decreased gradually as the solution pH levels increased. With increasing pH level from 7 to 14, the rod-like HA nanoparticles gradually changed to spherical shape at pH 14. Note that, the obtained product is Mg and Sr containing A- and B-type carbonate HA at alkaline pH and it can be a potential material for biomedical applications.

PVA/H-β zeolite mixed matrix membranes for pervaporation dehydration of isopropanol-water mixtures

  • Huang, Zhen;Ru, Xiao-Fei;Guo, Yu-Hua;Zhu, Ya-Tong;Teng, Li-Jun
    • Membrane and Water Treatment
    • /
    • 제10권2호
    • /
    • pp.165-178
    • /
    • 2019
  • Mixed matrix membranes (MMMs) of poly (vinyl alcohol) (PVA) containing certain amounts of H-${\beta}$ zeolite for pervaporation were manufactured by using a solution casting protocol. These zeolite-embedded membranes were then characterized with scanning electron microscope (SEM), X-ray diffraction (XRD) and swelling tests. The membrane separation performance has been examined by means of isopropanol (IPA) dewatering from its highly concentrated aqueous solutions via response surface methodology (RSM). The results have demonstrated that the influences of feed IPA composition (85-95 wt.%), feed temperature ($50-70^{\circ}C$), zeolite loading (15-25 wt.%) and their interactive influences are all statistically significant on both pervaporation flux ($398-1228g/m^2{\cdot}h$) and water/isopropanol separation factor (617-2001). The quadratic models based on the RSM analysis have performed excellently to correlate experimental data with very high determination coefficients and very low relative standard deviations. The optimal pervaporation predictions given by using the RSM models demonstrate a total flux of $953g/m^2{\cdot}h$ and separation factor of 1458, and are excellently verified by experimental results. As reflected by these results, PVA MMMs embedded with hydrophilic $H-{\beta}$ zeolite entities have performed considerably better than its pure counterpart and indicated great potential for isopropanol dehydration applications.