DOI QR코드

DOI QR Code

Physicochemical properties of different phases of titanium dioxide nanoparticles

  • Dong, Vu Phuong (Department of Pharmacology and Dental Therapeutic, College of Dentistry, Chosun University) ;
  • Yoo, Hoon (Department of Pharmacology and Dental Therapeutic, College of Dentistry, Chosun University)
  • Received : 2021.08.06
  • Accepted : 2021.08.31
  • Published : 2021.09.30

Abstract

The physicochemical properties of crystalline titanium dioxide nanoparticles (TiO2 NPs) were investigated by comparing amorphous (amTiO2), anatase (aTiO2), metaphase of anatase-rutile (arTiO2), and rutile (rTiO2) NPs, which were prepared at various calcination temperatures (100℃, 400℃, 600℃, and 900℃). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses confirmed that the phase-transformed TiO2 had the characteristic features of crystallinity and average size. The surface chemical properties of the crystalline phases were different in the spectral analysis. As anatase transformed to the rutile phase, the band of the hydroxyl group at 3,600-3,100 cm-1 decreased gradually, as assessed using Fourier transform infrared spectroscopy (FT-IR). For ultraviolet-visible (UV-Vis) spectra, the maximum absorbance of anatase TiO2 NPs at 309 nm was blue-shifted to 290 nm at the rutile phase with reduced absorbance. Under the electric field of capillary electrophoresis (CE), TiO2 NPs in anatase migrated and detected as a broaden peak, whereas the rutile NPs did not. In addition, anatase showed the highest photocatalytic activity in an UV-irradiated dye degradation assay in the following order: aTiO2 > arTiO2 > rTiO2. Overall, the phases of TiO2 NPs showed characteristic physicochemical properties regarding size, surface chemical properties, UV absorbance, CE migration, and photocatalytic activity.

Keywords

Acknowledgement

This study was supported by the research funds from Chosun University, 2019.

References

  1. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys 2005;44:8269-85. doi: 10.1143/JJAP.44.8269.
  2. Bachler G, von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles. Nanotoxicology 2015;9:373-80. doi: 10.3109/17435390.2014.940404.
  3. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012;46:2242-50. doi: 10.1021/es204168d.
  4. Kulkarni M, Mazare A, Gongadze E, Perutkova S, Kralj-Iglic V, Milosev I, Schmuki P, Iglic A, Mozetic M. Titanium nanostructures for biomedical applications. Nanotechnology 2015;26:062002. doi: 10.1088/0957-4484/26/6/062002.
  5. Waghmode MS, Gunjal AB, Mulla JA, Patil NN, Nawani NN. Studies on the titanium dioxide nanoparticles: biosynthesis, applications and remediation. SN Appl Sci 2019;1:310. doi: 10.1007/s42452-019-0337-3.
  6. Almaguer-Flores A, Silva-Bermudez P, Galicia R, Rodil SE. Bacterial adhesion on amorphous and crystalline metal oxide coatings. Mater Sci Eng C Mater Biol Appl 2015;57:88-99. doi: 10.1016/j.msec.2015.07.031.
  7. Zhao X, Wang G, Zheng H, Lu Z, Zhong X, Cheng X, Zreiqat H. Delicate refinement of surface nanotopography by adjusting TiO2 coating chemical composition for enhanced interfacial biocompatibility. ACS Appl Mater Interfaces 2013;5:8203-9. doi: 10.1021/am402319a.
  8. Cimpean A, Popescu S, Ciofrangeanu CM, Gleizes AN. Effects of LP-MOCVD prepared TiO2 thin films on the in vitro behavior of gingival fibroblasts. Mater Chem Phys 2011;125:485-92. doi: 10.1016/j.matchemphys.2010.10.028.
  9. Shirkavand S, Moslehifard E. Effect of TiO2 nanoparticles on tensile strength of dental acrylic resins. J Dent Res Dent Clin Dent Prospects 2014;8:197-203. doi: 10.5681/joddd.2014.036.
  10. Bahremandi Tolou N, Fathi MH, Monshi A, Mortazavi VS, Shirani F, Mohammadi M. The effect of adding TiO2 nanoparticles on dental amalgam properties. Iran J Mater Sci Eng 2013;10:46-56.
  11. Koparde VN, Cummings PT. Phase transformations during sintering of titania nanoparticles. ACS Nano 2008;2:1620-4. doi: 10.1021/nn800092m.
  12. Matthews A. The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions. Am Mineral 1976;61:419-24.
  13. Khatim O, Amamra M, Chhor K, Bell AMT, Novikov D, Vrel D, Kanaev A. Amorphous-anatase phase transition in single immobilized TiO2 nanoparticles. Chem Phys Lett 2013;558:53-6. doi: 10.1016/j.cplett.2012.12.019.
  14. Hanaor DAH, Sorrell CC. Review of the anatase to rutile phase transformation. J Mater Sci 2011;46:855-74. doi: 10.1007/s10853-010-5113-0.
  15. Gouma PI, Mills MJ. Anatase-to-rutile transformation in titania powders. J Am Ceram Soc 2001;84:619-22. doi: 10.1111/j.1151-2916.2001.tb00709.x.
  16. Kavan L, Gratzel M, Gilbert SE, Klemenz C, Scheel HJ. Electrochemical and photoelectrochemical investigation of singlecrystal anatase. J Am Chem Soc 1996;118:6716-23. doi: 10.1021/ja954172l.
  17. Xu M, Gao Y, Moreno EM, Kunst M, Muhler M, Wang Y, Idriss H, Woll C. Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys Rev Lett 2011;106:138302. doi: 10.1103/PhysRevLett.106.138302.
  18. Tang H, Prasad K, Sanjines R, Schmid PE, Levy F. Electrical and optical properties of TiO2 anatase thin films. J Appl Phys 1994;75:2042-7. doi: 10.1063/1.356306.
  19. Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E, Batzill M. Why is anatase a better photocatalyst than rutile?--model studies on epitaxial TiO2 films. Sci Rep 2014;4:4043. doi: 10.1038/srep04043.
  20. Liu L, Zhao H, Andino JM, Li Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal 2012;2:1817-28. doi: 10.1021/cs300273q.