• Title/Summary/Keyword: x-ray diffraction(XRD)

Search Result 2,647, Processing Time 0.033 seconds

Biostability and Drug Delivery Efficiency of γ-Fe2O3 Nano-particles by Cytotoxicity Evaluation (세포독성 평가를 통한 γ-Fe2O3 나노입자의 생체안정성 및 약물전달효율)

  • Lee, Kwon-Jai;An, Jeung-Hee;Shin, Jae-Soo;Kim, Dong-Hee;Yoo, Hwa-Seung;Cho, Chong-Kwan
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.132-136
    • /
    • 2010
  • This study examined the biostability and drug delivery efficiency of g-$Fe_2O_3$ magnetic nanoparticles (GMNs) by cytotoxicity tests using various tumor cell lines and normal cell lines. The GMNs, approximately 20 nm in diameter, were prepared using a chemical coprecipitation technique, and coated with two surfactants to obtain a water-based product. The particle size of the GMNs loaded on hangamdan drugs (HGMNs) measured 20-50 nm in diameter. The characteristics of the particles were examined by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-TEM) and Raman spectrometer. The Raman spectrum of the GMNs showed three broad bands at 274, 612 and $771\;cm^1$. A 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay showed that the GMNs were non-toxic against human brain cancer cells (SH-SY5Y, T98), human cervical cancer cells (Hela, Siha), human liver cancer cells (HepG2), breast cancer cells (MCF-7), colon cancer cells (CaCO2), human neural stem cells (F3), adult mencenchymal stem cells (B10), human kidney stem cells (HEK293 cell), human prostate cancer (Du 145, PC3) and normal human fibroblasts (HS 68) tested. However, HGMNs were cytotoxic at 69.99% against the DU145 prostate cancer cell, and at 34.37% in the Hela cell. These results indicate that the GMNs were biostable and the HGMNs served as effective drug delivery vehicles.

A Study on the Polymer Nanocomposite for Corrosion Protection (내식 방지용 고분자 나노복합재료에 관한 연구)

  • Lyu, Sung Gyu;Park, Se Hyeong;Park, Chan Sup;Cha, Jong Hyun;Sur, Gil Soo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.212-216
    • /
    • 2005
  • Benzotriazole which is used as a corrosion inhibitor for the zinc coated steel was intercalated into Na-MMT. X-ray diffraction experiments on intercalant/silicate composite samples demonstrated that the intercalation of intercalant leads to an increase in the spacing between silicate layers. Water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposites, to use as a coating agent, were prepared with these modified MMT. We found that mono-layered silicates were dispersed in PEA matrix and those resultants were exfoliated nanocomposites. From the result of salt spray test, we found that this coating agent prepared with water soluble poly(ethylene-co-acrylic acid) (PEA) nanocomposite provided good corrosion protection. These results were caused by decreasing the rate of oxygen permeation from silicate layers dispersed homogeneously in PEA matrix and the effect of corrosion inhibitor from benzotriazole.

Electrocatalytic Activity of Platinum-palladium Catalysts Prepared by Sequential Reduction Methods (순차적 환원 방법으로 제조된 백금-팔라듐 촉매의 전기 활성)

  • Park, Jae Young;Park, Soo-Jin;Jung, Yongju;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.153-156
    • /
    • 2012
  • In this study, two different methods were studied to prepare Pt-Pd catalysts for direct methanol fuel cells in order to enhance the electrochemical efficiency. The catalysts were compared with simultaneously deposited Pt-Pd and sequentially deposited Pt-Pd. The electrocatalysts contained 20 wt% of metal loading on carbon black and 1 : 2 of Pt : Pd atomic ratio. Electrochemical properties of the catalysts were compared by measuring cyclic voltammetries and average sizes and lattice parameters were measured by transmission electron microscopy images and x-ray diffraction. As a result, sequentially deposited Pt-Pd/C catalysts showed better electrochemical properties than those of simultaneously deposited Pt-Pd/C catalysts.

The Microstructure and Coarsening Behavior of Cr2O3 Dispersoid in ODS Cu Produced by Reactive Milling (반응성 밀링에 의해 제조된 Cr2O3 분산강화형 Cu 합금의 미세조직과 입자조대화)

  • Park, Eun-Bum;Hwang, Seung-Joon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.171-179
    • /
    • 2018
  • Copper powder dispersed with 4 vol.% of $Cr_2O_3$ was successfully produced by a simple milling at 210 K with a mixture of $Cu_2O$, Cu and Cr elemental powders, followed by Hot Pressing (HP) at 1123 K and 50 MPa for 2h to consolidate the milled powder. The microstructure of the HPed material was characterized by standard metallographic techniques such as XRD (X-ray Diffraction), TEM and STEM-EDS. The results of STEMEDS analysis showed that the HPed materials comprised a mixture of nanocrystalline Cu matrix and $Cr_2O_3$ dispersoid with a homogeneous bimodal size distribution. The mechanical properties of the HPed materials were characterized by micro Vickers hardness test at room temperature. The thermodynamic considerations on the heat of formation, the incubation time to ignite MSR (Mechanically induced Self-sustaining Reaction), and the adiabatic temperature for the heat of displacement reaction between the oxide-metal are made for the delayed formation of $Cr_2O_3$ dispersoid in terms of MSR suppression. The results of TEM observation and hardness test indicated that the relatively large dispersoids in the HPed materials are attributed to the significant coarsening for the high temperature consolidation; this leads to the low Vickers hardness value. Based on the thermodynamic calculation for the operating processes with a limited number of parameters, the formation kinetics and coarsening of the $Cr_2O_3$ dispersoid are discussed.

The Study on the Corrosion Property of the Zn-Mg Alloy Coatings with Various Mg Contents using EIS Measurement (EIS 분석을 통한 Mg 함량에 따른 Zn-Mg 박막의 부식 특성에 관한 연구)

  • Bae, Ki-Tae;La, Joung-Hyun;Kim, Kwang-Bae;Lee, Sang-Yul
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.330-334
    • /
    • 2014
  • In this study, the Zn-Mg alloy coatings with various Mg contents were deposited using an unbalanced magnetron sputtering process. Their surface microstructure, chemical composition, phase, and corrosion property were investigated. The microstructure of the Zn-Mg coatings changed from porous microstructure to dense one with increasing Mg contents in the coatings. As Mg contents in coatings increased, intermetallic phases such as $Mg_2Zn_{11}$ and $MgZn_2$ were detected from X-ray diffraction (XRD) results. The corrosion resistance of the Zn-Mg alloy coatings was investigated quantitatively using electrochemical impedance spectroscopy (EIS) measurement with 3.5% NaCl solution. The results of EIS measurement showed that the charge transfer resistance and the phase angle of the Zn-Mg alloy coatings were increased from $162.1{\Omega}{\cdot}cm^2$ to $558.8{\Omega}{\cdot}cm^2$ and from about $40^{\circ}$ to $60^{\circ}$ with increasing Mg contents from 5.1 wt.% to 15.5 wt.% in the coatings. These results demonstrate that the Zn-Mg coatings with increasing Mg contents showed an enhanced corrosion resistance.

Characteristics of NbN Films Deposited on AISI 304 Using Inductively Coupled Plasma Assisted DC Magnetron Sputtering Method

  • Jun, Shinhee;Kim, Junho;Kim, Sunkwang;You, Yong Zoo;Cha, Byungchul
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.187-191
    • /
    • 2013
  • Niobium nitride (NbN) films were deposited on AISI 304 stainless steels by inductively coupled plasma (ICP) assisted dc magnetron sputtering method at different ICP powers, and the effects of ICP power on the phase formation, mechanical and chemical properties of the films were investigated. X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM) were used to analyze the crystal structure and micro-knoop hardness was used to measure the hardness of the films. Also, 3-D mechanical profiler and a ball-on-disk wear tester were used to measure the thickness of the films and to estimate wear characteristics, respectively. The thickness of the films decreased but their hardness increased with increasing ICP power, and it was confirmed that only cubic ${\delta}$-NbN(200) remained at high ICP power. At lower ICP powers, a mixture of the hexagonal ${\delta}^{\prime}$-NbN and cubic ${\delta}$-NbN phases was obtained in the films and the hardness decreased. The corrosion potential value increased gradually with increasing ICP power, but the changes of ICP power did not significantly influence the overall corrosion resistance.

The influence of the soaking in the manufacturing of positive tubular plates on the performance of lead-acid batteries (튜브식 양극판의 침적공정이 전지 성능에 미치는 영향)

  • Yoon, Youn-Saup;Kim, Byung-Kuan;An, Sang-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.211-218
    • /
    • 2008
  • The performance of positive plates depends on the structure of the lead dioxide active mass. The positive active materials (PAM) consists of a skeleton, built up of agglomerates and macropores. Agglomerates, in their turn, comprise particles and micropores. This paper described a study conducted to determine the effects of different soaking times between the acid fill and formation stages of the tubular plate production. For the positive plates a lead oxide were filled into tubular bag with a red lead. After filling the positive plates were soaked in $H_2SO_4$ solution. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrical testing had been used to study the compositional and morphological aspects of the positive active material(PAM) just prior and after formation. Results indicate that PAM compositions were effected by the soaking time and acid density of $H_2SO_4$ solution. It can be seen that as the soaking time duration increases, $\alpha$-PbO, $Pb_3O_4$, and Pb were all gradually sulphating. Composition of 3BS reached a maximum at around 3 h duration and $H_2SO_4$ of sp. gr. 1.10 on soaking. This results would suggest that the most beneficial conditions for soaking were the $H_2SO_4$ of sp. gr. 1.10 and 2 to 6 h of soaking.

Ag가 코팅된 ZnO nanorod 구조의 광학적 특성 연구

  • Go, Yeong-Hwan;Lee, Dong-Hun;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.209-209
    • /
    • 2010
  • 금(Au) 또는 은(Ag) 금속 나노입자의 모양, 크기, 분포 상태를 조절하여 가시광선과 적외선, 자외선 영역에서 강한 표면 플라즈몬 효과을 이용할 수 있는데, 최근 이러한 금속 나노입자의 표면플라즈몬 효과를 이용하여 태양광 소자의 성능을 향상시키는 연구가 매우 활발하게 이루어지고 있다. 그 중, 높은 효율과 낮은 제작비용 그리고 간단한 공정과정의 장점을 갖고 있어서 크게 주목 받고 있는 염료감응태양전지에서도 금(Au) 또는 은(Ag) 금속 나노입자을 이용하기 위한 많은 연구가 진행되고 있다. 그 예로, Au가 코팅된 $TiO_2$ 기반의 염료감응태양전지구조를 제작하여, 입사된 빛이 표면플라즈몬 효과를 통해, Au에서 여기된 전자들이 Au/$TiO_2$ 사에의 schottky 장벽을 통과하여 $TiO_2$의 전도대 전자들의 밀도가 증가하여, charge carrier generating rate을 높여 소자의 광변환 효율의 향상을 증명하였다. 이에 본 연구에서는, $TiO_2$보다 높은 전자 이동도(mobility)와 직선통로(direct path way)의 장점을 갖고 있는 ZnO nanorod에서의 charge carrier generating rate을 높일 수 있도록, 비교적 가격이 저렴한 Ag nanoparticle을 코팅하였다. ZnO nanorod 제작은 낮은 온도에서 간단하게 성장시킬 수 있는 hydrothermal 방법을 이용하였다. 기판위에 RF magnetron 스퍼터를 이용하여 AZO seed layer를 증착한 후, zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액을 사용해 ZnO nanorods를 성장시켰다. 이 후, Ag를 형성할 수 있도록 열증기증착법을 이용하여 코팅하였다. Ag의 증착시간에 따른 ZnO nanorods에서의 코팅된 구조와 형태를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 또한 입사된 빛에 의해, 여기된 ZnO 전도대 전자들이 다시 재결합을 통해 방출되는 photoluminescence 양을 scanning PL 장비를 통해 측정하여 Ag가 코팅된 ZnO nanorod의 광특성을 분석하였다.

  • PDF

온도 조건 변화에 따른 Cu-Pc 박막 $\beta$-phase type의 표면 결정 특성에 관한 연구

  • Kim, Hyeon-Suk;Gang, Sang-Baek;Chae, Yeong-An;Yun, Chang-Seon;Yun, Seong-Hyeon;Yu, Su-Chang;Kim, Jin-Tae;Cha, Deok-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.254-254
    • /
    • 2010
  • Cu-Pc(copper(II)-phthalocyanine)는 박막의 형성과정에서 열처리 방식과 온도에 따라 박막의 구조가 변하며, 구조로는 열적으로 준 안정적인 $\alpha$-phase와 열적으로 안정적인 $\beta$-phase가 있다. 본 연구에서는 Cu-Pc 박막의 열적으로 안정적인 $\beta$-phase 구조에 대해 온도 조건 변화에 따른 표면 결정 성장의 특성을 연구하고자 한다. 진공증착 방법 중 하나인 thermal evaporation deposition을 이용하여 glass 기판위에 전열 처리 및 후열 처리에 대해 온도 조건 변화에 따른 $\beta$-phase type의 표면 결정 특성을 연구하였다. Cu-Pc 박막의 성장두께는 50nm 일정한 두께로 fluxmeter 및 thickness monitor를 이용하여 제어하였다. 50nm의 두께에 따른 기판온도를 $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$로 전열 처리한 후 각각 전열 처리한 기판온도에 대해 1hour, 2hour, 3hour 후열 처리하여 온도 조건에 따른 박막을 성장한 후, $\beta$-phase type에 대한 결정 구조 및 표면 특성 변화를 분석하였다. 제작된 Cu-Pc의 박막은 $\beta$-phase type으로, 열처리에 따른 $\beta$-phase transition 현상을 연구하였다. XRD(X-ray diffraction)를 통하여 박막에 대한 결정 구조 분석 및 FE-SEM(field emission scanning electron microscopy)을 이용하여 Cu-Pc 박막의 구조적 결정성과 방향성 등, 표면 상태와 형상구조에 대해 표면의 특성을 분석하며, 광 흡수도(UV-visible absorption spectra)을 이용하여 온도 조건에 따른 투과/흡수 현상을 비교분석하였다.

  • PDF

Fabrication of the catalyst free GaN nanorods on Si grown by MOCVD

  • Ko, Suk-Min;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.232-232
    • /
    • 2010
  • Recently light emitting diodes (LEDs) have been expected as the new generation light sources because of their advantages such as small size, long lifetime and energy-saving. GaN, as a wide band gap material, is widely used as a material of LEDs and GaN nanorods are the one of the most widely investigated nanostructure which has advantages for the light extraction of LEDs and increasing the active area by making the cylindrical core-shell structure. Lately GaN nanorods are fabricated by various techniques, such as selective area growth, vapor-liquid-solid (VLS) technique. But these techniques have some disadvantages. Selective area growth technique is too complicated and expensive to grow the rods. And in the case of VLS technique, GaN nanorods are not vertically aligned well and the metal catalyst may act as the impurity. So we just tried to grow the GaN nanorods on Si substrate without catalyst to get the vertically well aligned nanorods without impurity. First we deposited the AlN buffer layer on Si substrate which shows more vertical growth mode than sapphire substrate. After the buffer growth, we flew trimethylgallium (TMGa) as the III group source and ammonia as the V group source. And during the GaN growth, we kept the ammonia flow stable and periodically changed the flow rate of TMGa to change the growth mode of the nanorods. Finally, as the optimization, we changed the various growth conditions such as the growth temperature, the working pressure, V/III ratio and the doping level. And we are still in the process to reduce the diameter of the nanorods and to extend the length of the nanorods simultaneously. In this study, we focused on the shape changing of GaN nanorods with different growth conditions. So we confirmed the shape of the nanorods by scanning electron microscope (SEM) and carried out the Photoluminescence (PL) measurement and x-ray diffraction (XRD) to examine the crystal quality difference between samples. Detailed results will be discussed.

  • PDF