Electrocatalytic Activity of Platinum-palladium Catalysts Prepared by Sequential Reduction Methods

순차적 환원 방법으로 제조된 백금-팔라듐 촉매의 전기 활성

  • Park, Jae Young (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 박재영 (부산대학교 화학생명공학부) ;
  • 박수진 (인하대학교 화학과) ;
  • 정용주 (한국기술교육대학교 응용화학공학과) ;
  • 김석 (부산대학교 화학생명공학부)
  • Published : 2012.04.10

Abstract

In this study, two different methods were studied to prepare Pt-Pd catalysts for direct methanol fuel cells in order to enhance the electrochemical efficiency. The catalysts were compared with simultaneously deposited Pt-Pd and sequentially deposited Pt-Pd. The electrocatalysts contained 20 wt% of metal loading on carbon black and 1 : 2 of Pt : Pd atomic ratio. Electrochemical properties of the catalysts were compared by measuring cyclic voltammetries and average sizes and lattice parameters were measured by transmission electron microscopy images and x-ray diffraction. As a result, sequentially deposited Pt-Pd/C catalysts showed better electrochemical properties than those of simultaneously deposited Pt-Pd/C catalysts.

본 연구에서 직접 메탄올형 연료전지용 담지 촉매의 전기 화학적 효율을 높이기 위하여 담지 촉매의 합성을 위한 2가지 다른 방법을 조사하였다. 담지 촉매에 있어서 합금을 형성하여 동시 담지하는 방법과 금속을 순차적으로 담지하는 방법을 비교하였다. 금속의 총 함량을 20 wt%를 사용하였으며, Pt-Pd의 금속비를 1 : 2로 하였다. 순환 전류-전압곡선(CVs), TEM 이미지와 XRD분석을 이용하여 두가지 다른 방법으로 제조된 촉매 간의 전기화학적 특성, 입자의 평균 크기 및 결정의 구조 변화를 비교 분석하였다. 그 결과, 순차적 금속 담지 촉매가 동시 담지 촉매보다 단위 무게당 산화전류 수치를 나타내어 보다 높은 전기활성 특성을 보였다.

Keywords

References

  1. S. Gottesfeld, C. F. Keller, S. M. Holst, and A. Redondo, Fuel Cells-Green Power, S. Thomas, M. Zalbowitz, LA-UR-99-3231.
  2. S. Thanasilp and M. Hunsom, Renewable Energy, 56, 1164 (2011).
  3. J. R. C. Salgado, E. Antolini, and E. R. Gonzalez, J. Power Sources, 138, 56 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.011
  4. E. Antolini, J. R. C. Salgado, M. J. Giz, and E. R. Gonzalez, Int. J. Hydrogen Energy, 30, 1213 (2005). https://doi.org/10.1016/j.ijhydene.2005.05.001
  5. K. D. Beard, M. T. Schaal, J. W. Van Zee, and J. R. Monnieer, Appl. Catal. B, 72, 262 (2007). https://doi.org/10.1016/j.apcatb.2006.11.006
  6. K. D. Beard, J. W. Van Zee, and J. R. Monnier, Appl. Cata. B, 88, 185 (2009). https://doi.org/10.1016/j.apcatb.2008.09.033
  7. S. C. Zignani, E. Antolini, and E. R. Gonazlez, J. Power Sources, 191, 344 (2009). https://doi.org/10.1016/j.jpowsour.2009.01.088
  8. E. Rios, S. Abarca, P. Daccarett, H. Nguyen Cong, D. Martel, J. F. Marco, J. R. Gancedo, and J. L. Gautier, Int. J. Hdrogen Energy, 33, 4945 (2008). https://doi.org/10.1016/j.ijhydene.2008.06.030
  9. F. Kadirgan, A. M. Kannan, T. Atilan, S. Beyhan, S. S. Ozenler, S. Suzer, and A. Yorur, Int. J. Hydrogen Energy, 34, 9450 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.028
  10. J. Luo, P. N. Njoki, Y. Lin, L. Wang, and C. J. Zhong, Electrochem. Commun., 8, 581 (2006). https://doi.org/10.1016/j.elecom.2006.02.001
  11. F. Alcaide, G. Alvarez, P. L. Cabot, H. J. Grande, O. Miguel, and A. Querejeta., Int. J. Hydrogen Energy, 36, 4432 (2011). https://doi.org/10.1016/j.ijhydene.2011.01.015
  12. A. S. Arico, S. Srinivasan, and V. Antonucci, Fuel Cells, 1, 133 (2001). https://doi.org/10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
  13. D. Pantea and H. Darmstadt, Appl. Surf. Sci., 217, 181 (2003). https://doi.org/10.1016/S0169-4332(03)00550-6
  14. R. J. Joseyphus, T. Matsumoto, H. Takahashi, D. Kodama, K. Tohji, and B. Jeyadevan, J. Solid State Chem., 180, 3008 (2007). https://doi.org/10.1016/j.jssc.2007.07.024
  15. Y. Zhao, L. Zhan, J. Tian, S. Nie, and Z. Ning, Electrochim. Acta, 56, 1967 (2011). https://doi.org/10.1016/j.electacta.2010.12.005
  16. S. Kim, H. J. Sohn, S. K. Hong, and S. J. Park, J. Appl. Electrochem., 39, 1553 (2009). https://doi.org/10.1007/s10800-009-9837-y
  17. S. Kim, Y. J. Jung, and S. J. Park, Carbon Letters, 10, 213 (2009). https://doi.org/10.5714/CL.2009.10.3.213
  18. S. Thanasilp and M. Hunsom, Renewable Energy, 36, 1795 (2011). https://doi.org/10.1016/j.renene.2010.10.024
  19. S. Kim, H. J. Sohn, and S. J. Park, Curr. Appl. Phys., 10, 1142 (2010). https://doi.org/10.1016/j.cap.2010.01.016
  20. S. Kim and S. J. Park, Anal. Chim. Acta, 619, 43 (2008). https://doi.org/10.1016/j.aca.2008.02.064
  21. S. J. Park and S. Y. Lee, Carbon Letters, 10, 19 (2009). https://doi.org/10.5714/CL.2009.10.1.019
  22. A. N. Golikand, M. Asgari, and E. Lohrasbi, Int. J. Hydrogen Energy, 36, 13317 (2011) https://doi.org/10.1016/j.ijhydene.2010.05.076