• Title/Summary/Keyword: x-ray diffraction(XRD)

Search Result 2,647, Processing Time 0.139 seconds

The reduction of etching damage in lead-zirconate-titanate thin films using Inductively Coupled Plasma (Inductively Coupled Plasma를 이용한 lead-zirconate-titanate 박막의 식각 손상 개선)

  • Lim, Kyu-Tae;Kim, Kyoung-Tae;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.178-181
    • /
    • 2003
  • In this work, we etched PZT films with various additive gases ($O_2$ and Ar) in $Cl_2/CF_4$ plasmas, while mixing ratio was fixed at 8/2. After the etching, the plasma induced damages are characterized in terms of hysteresis curves, leakage current, retention properties, and switching polarization. When the electrical properties of PZT etched in $O_2$ or Ar added $Cl_2/CF_4$ were compared, the value of remanent polarization in $O_2$ added $Cl_2/CF_4$ plasma is higher than that in Ar. added plasma. The maximum etch rate of the PZT thin films was 145 nm/min for 30% Ar added $Cl_2/CF_4$ gas having mixing ratio of 8/2 and 110 nm/min for 10% $O_2$ added to that same gas mixture. In order to recover the ferroelectic properties of the PZT thin films after etching, we annealed the etched PZT thin films at $550^{\circ}C$ in an $O_2$ atmosphere for 10 min. From the hysteresis curves, leakage current, retention property and switching polarization, the reduction of the etching damage and the recovery via the annealing was turned out to be more effective when $O_2$ was added to $Cl_2/CF_4$ than Ar. X-ray diffraction (XRD) showed that the structural damage was lower when $O_2$ was added to $Cl_2/CF_4$. And the improvement in the ferroelectric properties of the annealed samples was consistent with the increased intensities of the (100) and the (200) PZT peaks.

  • PDF

Structural and Electrochemical Characterization of $LiFePO_4$ Synthesized by Hydrothermal Method

  • Jeon, Yeon-Su;Jin, En-Mei;Jin, Bo;Jun, Dae-Kyoo;Han, Zhen Ji;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.48-52
    • /
    • 2006
  • Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity' of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). $LiFePO_4$/Li and $LiFePO_4-C$/Li cells were characterized electrochemically by cyclic voltammogram (CV), charge/discharge experiments and ac impedance spectroscopy. The results showed that the discharge capacity of $LiFePO_4$/Li cell was 147 mAh/g at the first cycle and 118 mAh/g after 30 cycles, respectively. The discharge capacity of $LiFePO_4-C$/Li cell with 5wt% carbon black was the largest among $LiFePO_4-C$/Li cells, 133 mAh/g at the first cycle and 128 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4-C$/Li cell with 5wt% carbon black was better than that of $LiFePO_4$/Li cell.

  • PDF

$BaTiO_3/SrTiO_3$ Heterolayered Thin/Thick films Dielectric Properties ($BaTiO_3/SrTiO_3$ 이종층 박막/후막의 유전특성)

  • Han, Sang-Wook;Kim, Ji-Heon;Park, In-Gil;Lee, Sung-Gap;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1850-1852
    • /
    • 2005
  • $SrTiO_3$ and $BaTiO_3$ sol-liquids and powders were prepared by the sol-gel method. $SrTiO_3/BaTiO_3$ heterolayered thin/thick films have been prepared on the $Al_2O_3$ substrates by screen printing and spin-coating method. The thin films were sintered at $750^{\circ}C$ in the air for 1 hour and the thick films sintered at $1325^{\circ}C$ in the air for 2 hours, respectively. The $SrTiO_3/BaTiO_3$ thin/thick films's structural and dielectric properties were investigated. Increasing the spin-coating times, (110), (200), (211) peaks of the $SrTiO_3$ were increased. The X-ray diffraction(XRD) patterns and SEM photographs indicated that the $SrTiO_3$ phase were formed in the surface of $BaTiO_3$ thick films. The average thickness of a $BaTiO_3$ thick films and $SrTiO_3$ thin films were $50{\mu}m$ and 400nm, respectively The dielectric constant and dielectric loss of the $SrTiO_3/BaTiO_3$ thin/thick films with $SrTiO_3$ coated 5 times were 1598 and 0.0436 at 10KHz.

  • PDF

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

Control of Microstructure on TiO2 Nanofibers for Photocatalytic Application (광촉매 응용을 위한 TiO2 나노 섬유의 미세구조 제어)

  • Lee, Chang-Gyu;Kim, Wan-Tae;Na, Kyeong-Han;Park, Dong-Cheol;Yang, Wan-Hee;Choi, Won-Youl
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.417-421
    • /
    • 2018
  • $TiO_2$ has excellent photocatalytic properties and several studies have reported the increase in its specific surface area. The structure of $TiO_2$ nanofibers indicates promising improved photocatalytic properties and these nanofibers can thus potentially be applied in air pollution sensors and pollutant removal filters. In this study, a $TiO_2$ nanofiber was fabricated by the electrospinning method. The fabrication processing factors such as the applied voltage, the distance between nozzle and collector, and the inflow rate of solution were controlled. The precursor was titanium (IV) isopropoxide and as-spun $TiO_2$ nanofibers were heated at $450^{\circ}C$ for 2 h to obtain an anatase crystalline structure. The microstructure was analyzed using field emission scanning electron microscope (FE-SEM) and X-ray diffraction analysis (XRD). The anatase phase was observed in the $TiO_2$ nanofibers after heat treatment. The diameter of $TiO_2$ nanofibers increased with the flow rate, but decreased with decreasing applied voltage and nozzle to collector distance. The diameter of $TiO_2$ nanofibers was controlled in the range of 364 nm to 660 nm. These nanofibers are expected to be very useful in photocatalytic applications.

Synthesis and Characterization of Ruthenium Doped TiO2 Nanofibers

  • Park, Jung-Yeon;Lee, Deuk-Yong;Cho, Nam-Ihn;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.82-89
    • /
    • 2011
  • Ruthenium(Ru)-doped $TiO_2$ nanofibers were prepared using electrospun Ru-$TiO_2$/poly(vinyl acetate) (PVAc) fibers and subsequent annealing for 1 h at temperatures in the range of $500^{\circ}C$ to $1000^{\circ}C$ in air. The properties of the Ru-$TiO_2$ fibers were characterized as a function of the Ru content and calcination temperature using X-ray diffraction, thermal gravimetry with differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and viscometer, pycnometer and dynamic tensiometer measurements. Although the diameter of the fiber decreased slightly with increasing calcination temperature, no dramatic changes were observed with respect to the ruthenium content. The XRD and FT-IR results revealed that anatase phase and ruthenium metal began to be formed after calcination at temperatures above $500^{\circ}C$. Anatase and rutile phases and ruthenium metal coexisted in the fibers calcined above $600^{\circ}C$. No anatase phase was detected in the fibers containing ruthenium when they were calcined at $1000^{\circ}C$. The morphology of the fibers changed from smooth and uniform to porous with increasing temperature. The experimental results suggest that the calcination temperature and Ru content were influential in determining the morphology and structure of the fibers.

Fabrication of Ultra Fine β-phase Ti-Nb-Sn-HA Composite by Pulse Current Activated Sintering

  • Woo, Kee-Do;Wang, Xiaopeng;Kang, Duck-Soo;Kim, Sang-Hyuk;Woo, Jeong-Nam;Park, Sang-Hoon;Liuc, Zhiguang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.443-448
    • /
    • 2010
  • The $\beta$ phase Ti-Nb-Sn-HA bio materials were successfully fabricated by high energy mechanical milling and pulse current activated sintering (PCAS). Ti-6Al-4V ELI alloy has been widely used as biomaterial. But the Al has been inducing Alzheimer disease and V is classified as toxic element. In this study, ultra fine sized Ti-Nb-Sn-HA powder was produced by high energy mechanical milling machine. The $\beta$ phase Ti-Nb-Sn-HA powders were obtained after 12hr milling from $\alpha$ phase. And ultra fine grain sized Ti-Nb-Sn-HA composites could be fabricated using PCAS without grain growth. After sintering, the microstructures and phase-transformation of Ti-Nb-Sn-HA biomaterials were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The relative density was obtained by Archimedes principle and the hardness was measured by Vickers hardness tester. The $\beta$-Ti phase was obtained after 12h milling. As result of hardness and relative density, 12h milled Ti-Nb-Sn-HA composite has the highest values.

The Densification Properties of Distaloy AE-TiC Cermet by Spark Plasma Sintering (방전 플라즈마 소결에 의한 Distaloy AE-TiC 써멧의 치밀화 특성)

  • Cho, Ho-Jung;Ahn, In-Shup;Lee, Young-Hee;Park, Dong-Kyu
    • Journal of Powder Materials
    • /
    • v.14 no.4
    • /
    • pp.230-237
    • /
    • 2007
  • The fabrication of Fe alloy-40 wt.%TiC composite materials using spark plasma sintering process after ball-milling was studied. Raw powders to fabricate Fe alloy-TiC composite were Fe alloy, $TiH_{2}$ and activated carbon. Fe alloy powder was Distaloy AE (4%Ni-1%Cu-0.5%Mo-0.01%C-bal.%Fe) made by Hoeganes company with better toughness and lower melting point. These powders were ball-milled in horizontal attrition ball mill at a ball-to-powder weight ratio of 30 : 1. After that, these mixture powders were sintered by using spark plasma sintering apparatus for 5 min at $1200-1275^{\circ}C$ in vacuum atmosphere under $10^{-3}$ torr. DistaloyAE-40 wt.%TiC composite was directly synthesized by dehydrogenation and carburization reaction during sintering process. The phase transformation of as-milled powders and sintered materials was confirmed using X-ray diffraction (XRD) and transmission electron microscope (TEM). The density and harness materials was measured in order to confirm the densification behavior. In case of DistaloyAE-40 wt.%TiC composite retained for 5 min at $1275^{\circ}C$, it has the relative density of about 96% through the influence of rapid densification and fine TiC particle reinforced Fe-based composites materials.

Characteristics of Soil Nutrients by the Application of Rice Straw Ash (볏짚 회분의 토양적용에 따른 양분 특성 변화)

  • Kang, Ku;Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.105-113
    • /
    • 2018
  • In this study physical and chemical characteristics of rice straw ash (RSA) were analyzed in agricultural by-products such as the characteristics of soil pH, electric conductivity (EC), total phosphorus (T-P), available phosphate (Avail-P), and cation exchange capacity (CEC). The results showed that RSA is of mainly C in 95.74% and followed by Si > Al > P > Mg > K > Ca. The pH of RSA was high near 11 and the T-P concentration was $2,322.38{\pm}10.35mg/kg$. The specific surface area of RSA was $123.50m^2/g$, which was much lower than that of biochar. The X-ray diffraction (XRD) analysis indicated that RSA were C and Si based crystalline. TCLP and KSLT test results implied that the heavy metal concentrations were below the environmental standards and would not impose the risks. T-P concentration increased from $225.59{\pm}12.69mg/kg$ to $593.39{\pm}17.36mg/kg$ along with RSA mixing ratio to soil from 0% to 15%. Both pH and EC values were increased with the increase of RSA ratio. The changes in Avail-P and CEC were not when RSA mixing ratio was 1%. whereas the Avail-P concentration was slightly increase when the mixing ratio was more than 5%. Additional investigation considering receiving soil characteristics based on the results of this study would help effective application of RSA to soil.

Formation of Ni-W-P/Cu Electrodes for Silicon Solar Cells by Electroless Deposition (무전해 도금을 이용한 Si 태양전지 Ni-W-P/Cu 전극 형성)

  • Kim, Eun Ju;Kim, Kwang-Ho;Lee, Duk Haeng;Jung, Woon Suk;Lim, Jae-Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2016
  • Screen printing of commercially available Ag paste is the most widely used method for the front side metallization of Si solar cells. However, the metallization using Ag paste is expensive and needs high temperature annealing for reliable contact. Among many metallization schemes, Ni/Cu/Sn plating is one of the most promising methods due to low contact resistance and mass production, resulting in high efficiency and low production cost. Ni layer serves as a barrier which would prevent copper atoms from diffusion into the silicon substrate. However, Ni based schemes by electroless deposition usually have low thermal stability, and require high annealing process due to phosphorus content in the Ni based films. These problems can be resolved by adding W element in Ni-based film. In this study, Ni-W-P alloys were formed by electroless plating and properties of it such as sheet resistance, resistivity, specific contact resistivity, crystallinity, and morphology were investigated before and after annealing process by means of transmission line method (TLM), 4-point probe, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).