• Title/Summary/Keyword: wpc

Search Result 149, Processing Time 0.027 seconds

Production of Functional Whey Protein Concentrate by Monitoring the Process of Ultrafilteration

  • Jayaprakasha, H.M.;Yoon, Y.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.433-438
    • /
    • 2005
  • This investigation was undertaken in order to elicit the relationship between the extent of ultrafiltration processing of whey and its effect on composition and yield of resultant whey protein concentrate (WPC). Cheddar cheese whey was fractionated through ultrafiltration to an extent of 70, 80, 90, 95, 97.5% and 97.5% volume reduction followed by I stage and II stage diafiltration. After each level of ultrafiltration, the composition of WPC was monitored. Similarly, the initial whey was adjusted to 3.0, 6.2 and 7.0 pH levels and ultrafiltration was carried out to elicit the effect of pH of ultrafiltration on the composition. Further, initial whey was adjusted to different levels of whey protein content ranging from 0.5 to 1.0 per cent and subjected to ultrafiltration to different levels. The various range of retentate obtained were further condensed and spray dried in order to assess the yield of WPC per unit volume of whey used and the quantity of whey required to produce unit weight of product. With the progress of ultrafiltration, there was a progressive increase in protein content and decrease in lactose and ash content. The regression study led to good relationships with $R^2$ values of more than 0.95 between the extents of permeate removed and the resultant changes in composition of each of the constituents. Whey processed at pH 3.0 had significantly a very low ash content and high protein content as compared to processing at 6.2 and 7.0. The yield of WPC per unit volume of whey varied significantly with the initial protein content. Higher initial protein content led to higher yield of all ranges of WPC and the quantity of whey required per unit weight of spray dried WPC significantly reduced. Regression equations establishing the relationship between initial protein content of whey and the yield of various types of WPC have been derived with very high $R^2$ values of 0.99. This study revealed that, the yield and composition of whey can be monitored strictly by controlling the processing parameters and WPC can be produced depending on the food formulation requirement.

Effects of Melt-blending Condition and Additives on Mechanical Properties of Wood/PP Composites (용융혼합 조건과 첨가제가 목분/폴리프로필렌 복합체의 기계적 특성에 미치는 영향)

  • Ahn, Seong Ho;Kim, Dae Su
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.204-210
    • /
    • 2013
  • Effects of additives (lubricant and antioxidant) and melt-blending condition (temperature, time and rotor speed) on the mechanical properties of polypropylene-based wood polymer composites (WPCs) were investigated. WPCs were prepared by melt-blending followed by compression molding. To understand melt-blending procedure, torque change of the WPC melt-blend was monitored. Maleic anhydride modified PP and nanoclay were used as a compatibilizer and a reinforcing filler, respectively. UTM and izod impact tester were used to measure the mechanical properties of the WPCs and a color-difference meter was used to measure the discoloration of the WPCs according to melt-blending condition. The mechanical properties showed that the optimized melt-blending condition was $170^{\circ}C$, 15 min, and 60 rpm. The mechanical properties of the WPCs decreased with increasing lubricant and antioxidant content. The two step method, adding wood flour later separately during melt-blending, was more effective than the typical one step method for improving the mechanical properties of the WPCs.

A Study on the Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) and Wonder Process Craft (WPC) Treatments on Tribological Properties of SUJ2 Bearing Steel (SUJ2 베어링 강의 트라이볼로지 특성에 대한 초음파나노표면개질 (UNSM) 및 원더프로세스크래프트 (WPC) 처리 효과 연구)

  • Amanov, A.;Karimbaev, R.;Cho, I.H.;Kim, E.J.
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.170-178
    • /
    • 2022
  • Mechanical surface treatment is an excellent approach widely used to modulate and improve the performance and service life of bearings, gears, and frictional joints. The main purpose of this study is to investigate and compare the effect of ultrasonic nanocrystal surface modification (UNSM) and wonder process craft (WPC) on the surface and tribological properties of SUJ2 bearing steel. The surface roughness and hardness of the untreated and treated (UNSM- and WPC-treated) specimens were measured and compared. Their tribological properties were evaluated using a micro-tribometer under grease-lubricated and dry conditions against itself. Surface hardness measurement results revealed that both the UNSM- and WPC-treated specimens had a higher hardness than that of the untreated specimen. The surface roughness of the untreated specimen was reduced after UNSM and WPC treatments. Abrasive wear mode was observed on the surface of the specimens worn under grease-lubricated conditions, while adhesive wear mode was found on the surface of the specimens worn in dry conditions. According to the tribological test results, the friction coefficient and wear rate of the untreated specimens were reduced by the application of both the UNSM and WPC treatments under grease-lubricated and dry conditions.

Preparation and Characterizations of Wood Plastic Composite Panel Fabricated with Chamaecyparis obtusa Wood Flour (편백나무 목분을 첨가한 합성목재 패널의 제조 및 특성 평가)

  • Kim, Soo-Jong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.5
    • /
    • pp.126-132
    • /
    • 2022
  • Wood Plastic Composite(WPC) has been mostly used for outdoor purposes such as deck materials and trails so far. In this study, WPC panels with improved antibacterial properties, total volatile organic compound emissions (TVOC), and flame retardant were manufactured to use Wood Plastic Compound as interior materials for indoor use. WPC compound was prepared by mixing Chamaecyparis obtusa wood flour with high density polyethylene(HDPE). The prepared WPC compound exhibited excellent antibacterial and antifungal properties, and the total volatile organic compound emission(TVOC) was 0.062 mg/m2·h. The WPC panel(303mm×606mm×10mm) manufactured by a twin screw extruder with the manufactured compound achieved the flame retardant grade 2 standard of KS F 2271.

The determination of effect of TiO2 on dynamic behavior of scaled WPC warehouse by OMA

  • Tuhta, Sertac
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2022
  • The dynamic properties (frequencies, mode shapes, damping ratios) of the scaled WPC warehouse are compared using the operational modal analysis approach to the dynamic parameters (frequencies, mode shapes, damping ratios) of the full outer surface of titanium dioxide, 70 micron in thickness. Micro tremor ambient vibration data on ground level was used to provide ambient excitation. For the output-only modal identification, Enhanced Frequency Domain Decomposition (EFDD) was used. This study discovered a strong correlation between mode shapes. Titanium dioxide applied to the entire outer surface of the scaled WPC warehouse results in an average 14.05 percent difference in frequency values and 7.61 percent difference in damping ratios, demonstrating that nanomaterials can be used to increase rigidity in structures, or for reinforcement. Another significant finding in the study was the highest level of adherence of titanium dioxide and similar nanomaterials mentioned in the introduction to WPC structure surfaces.

Utilization of Makgeolli sludge for growth of probiotic bacteria (Probiotic bacteria의 생장에 대한 막걸리슬러지의 이용)

  • Kim, Wan-Sub
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.473-477
    • /
    • 2011
  • A number of health benefits have been claimed for probiotic bacteria such as Bifidobacterium (B) spp. Lactobacillus(L) acidophilus, and Lactococcus(Lc) cremoris. Viability of probiotic bacteria is important in order to provide health benefits. Only a limited culture media for the test purpose of probiotic bacteria are commercially available (MRS broth), but the media for large-scale propagation of viable cells which are able to be used as food additive are not available. The manufacture of a low priced and preferred novel medium for probiotic bacteria was therefore, attempted using whey protein concentrate(WPC) and Makgeolli sludge as a starting material. The effect of WPC and Makgeolli sludge on the growth of four strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was investigated. Medium prepared such as WPC, Makgeolli sludge, and WPC+Makgeolli sludge(WPCMs). It was observed that the growth of 4 strains (B. bifidum 15696, B. longum 15707, L. acidophilus CH-2, and Lc. cremoris 20076) was stimulated by Makgeolli sludge, WPC, WPCMs. Especially, Viable cell number of 4 strains in the WPCMs were higher than that of the single media. These result suggest the possibility that Makgeolli and WPC, acts as a growth factor for the growth of probiotic bacteria.

Mechanical Properties of Wood Flour Polypropylene Composites: Effect of Cycled Temperature Change (Wood Flour 폴리프로필렌 복합재료의 기계적 특성: 반복적 온도 변화의 영향)

  • Lee, S.Y.;Chun, S.J.;Doh, G.H.;Park, S.B.;Choi, S.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • The effect of cycled temperature change on the mechanical properties of wood flour(50 wt.% and 70 wt.%) polypropylene WPC(Wood Plastic Composites) was investigated in this study. Flexural modulus and flexural strength of the WPC showed a decrease due to the degradation of interfacial adhesion between polymer matrix and wood flour by the freeze-thaw test regardless of the cycled number. At the higher loading level of wood flour, the reduction of the flexural modulus was remarkable. After the cycled heat-freeze test, it was found that the flexural modulus and flexural strength of the WPC were lower at the high temperature ($60^{\circ}C$) and higher at the low temperature ($-20^{\circ}C$). At the low temperature ($-20^{\circ}C$) which is below glass transition temperature of polypropylene ($-10^{\circ}C$), WPC is in a glassy state which brings about the high stiffness and strength. At the high temperature ($60^{\circ}C$), the flexural modulus and flexural strength of the WPC with 50 wt.% wood flour were lower because of the increase of polymer ductility.

A Study on the Phase Separation and Mechanical Properties of Wood Flour-Polypropylene Composites (목분-폴리프로필렌 복합체의 상분리 및 기계적 특성에 관한 연구)

  • Lee, Kyoung Hee;Byon, Sungkwang
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.216-220
    • /
    • 2013
  • The phase separation in Wood Flour-Polymer Composite (WPC) was investigated and the reasons for change in mechanical properties with the content of wood flour were explored. The wood flour-polypropylene composite samples with different wood flour contents were prepared. From differential scanning calorimetry (DSC) thermograms of WPC samples, the trend of crystallinity and melting temperature ($T_m$) were analyzed. The crystallinity and melting temperature increased and then decreased as the content of wood flour increased. From these results, it was confirmed that at the low wood flour content the wood flours were dispersed into the polypropylene matrix but at the high wood flour content, the phase separation between polymer and wood flour phases appeared. The tensile strength of WPC samples was continuously decreased with the increase of wood flour content. At a low wood flour content, the low interfacial bonding and the decrease in crystallinity were the main reasons for the decrease in tensile strength with the increase of wood flour content. At a high wood flour content, the decrease in tensile strength resulted from the interfacial defects between the polymer and wood flour phases. The impact strength of the WPC sample showed the maximum behavior with the content of wood flour. At a low wood flour content, the impact strength was enhanced owing to the decrease in brittleness, which results from the decrease in crystallinity. At a high wood flour content, however, the impact strength decreased due to phase separation.